Cargando…

Phosphorylation of FOXP3 by LCK Downregulates MMP9 Expression and Represses Cell Invasion

Forkhead Box P3 (FOXP3) is a member of the forkhead/winged helix family of the transcription factors and plays an important role not only as a master gene in T-regulatory cells, but also as a tumor suppressor. In this study, we identified lymphocyte-specific protein tyrosine kinase (LCK), which corr...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakahira, Kumiko, Morita, Akihiro, Kim, Nam-Soon, Yanagihara, Itaru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796550/
https://www.ncbi.nlm.nih.gov/pubmed/24155921
http://dx.doi.org/10.1371/journal.pone.0077099
Descripción
Sumario:Forkhead Box P3 (FOXP3) is a member of the forkhead/winged helix family of the transcription factors and plays an important role not only as a master gene in T-regulatory cells, but also as a tumor suppressor. In this study, we identified lymphocyte-specific protein tyrosine kinase (LCK), which correlates with cancer malignancy, as a binding partner of FOXP3. FOXP3 downregulated LCK-induced MMP9, SKP2, and VEGF-A expression. We observed that LCK phosphorylated Tyr-342 of FOXP3 by immunoprecipitation and in vitro kinase assay, and the replacement of Tyr-342 with phenylalanine (Y342F) abolished the ability to suppress MMP9 expression. Although FOXP3 decreased the invasive ability induced by LCK in MCF-7 cells, Y342F mutation in FOXP3 diminished this suppressive effect. Thus we demonstrate for the first time that LCK upregulates FOXP3 by tyrosine phosphorylation, resulting in decreased MMP9, SKP2, and VEGF-A expression, and suppressed cellular invasion. We consider that further clarification of transcriptional mechanism of FOXP3 may facilitate the development of novel therapeutic approaches to suppress cancer malignancy.