Cargando…

Blood rheology and aging

The flow properties of blood play significant roles in tissue perfusion by contributing to hydrodynamic resistance in blood vessels. These properties are influenced by pathophysiological processes, thereby increasing the clinical relevance of blood rheology information. There is well-established cli...

Descripción completa

Detalles Bibliográficos
Autores principales: Simmonds, Michael J., Meiselman, Herbert J., Baskurt, Oguz K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796705/
https://www.ncbi.nlm.nih.gov/pubmed/24133519
http://dx.doi.org/10.3969/j.issn.1671-5411.2013.03.010
Descripción
Sumario:The flow properties of blood play significant roles in tissue perfusion by contributing to hydrodynamic resistance in blood vessels. These properties are influenced by pathophysiological processes, thereby increasing the clinical relevance of blood rheology information. There is well-established clinical evidence for impaired blood fluidity in humans of advanced age, including enhanced plasma and whole blood viscosity, impaired red blood cell (RBC) deformability and enhanced RBC aggregation. Increased plasma fibrinogen concentration is a common finding in many studies owing to the pro-inflammatory condition of aged individuals; this finding of increased fibrinogen concentration explains the higher plasma viscosity and RBC aggregation in elderly subjects. Enhanced oxidant stress in advanced age is also known to contribute to altered blood fluidity, with RBC deformability being an important determinant of blood viscosity. Several studies have shown that physical activity may improve the hemorheological picture in elderly subjects, yet well-designed observational and mechanistic studies are required to determine the specific effects of regular exercise on hemorheological parameters in healthy and older individuals.