Cargando…

Homology modeling and structural validation of tissue factor pathway inhibitor

Blood coagulation is a cascade of complex enzymatic reactions which involves specific proteins and cellular components to interact and prevent blood loss. The coagulation process begins by either “Tissue Dependent Pathway” (also known as extrinsic pathway) or by “contact activation pathway” (also kn...

Descripción completa

Detalles Bibliográficos
Autores principales: Agrawal, Piyush, Thakur, Zoozeal, Kulharia, Mahesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796881/
https://www.ncbi.nlm.nih.gov/pubmed/24143050
http://dx.doi.org/10.6026/97320630009808
Descripción
Sumario:Blood coagulation is a cascade of complex enzymatic reactions which involves specific proteins and cellular components to interact and prevent blood loss. The coagulation process begins by either “Tissue Dependent Pathway” (also known as extrinsic pathway) or by “contact activation pathway” (also known as intrinsic pathway). TFPI is an endogenous multivalent Kunitz type protease inhibitor which inhibits Tissue factor dependent pathway by inhibiting Tissue Factor:Factor VIIa (TF:FVIIa) complex and Factor Xa. TFPI is one of the most studied coagulation pathway inhibitor which has various clinical and potential therapeutic applications, however, its exact mechanism of inhibition is still unknown. Structure based mechanism elucidation is commonly employed technique in such cases. Therefore, in the current study the generated a complete TFPI structural model so as to understand the mechanistic details of it's functioning. The model was checked for stereochemical quality by PROCHECK-NMR, WHATIF, ProSA, and QMEAN servers. The model was selected, energy minimized and simulated for 1.5ns. The result of the study may be a guiding point for further investigations on TFPI and its role in coagulation mechanism.