Cargando…
Ultraviolet-B Wavelengths Regulate Changes in UV Absorption of Cleaner Fish Labroides dimidiatus Mucus
High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV abs...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797052/ https://www.ncbi.nlm.nih.gov/pubmed/24143264 http://dx.doi.org/10.1371/journal.pone.0078527 |
Sumario: | High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton’s body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton’s body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton’s body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure. |
---|