Cargando…
Functions of NOD-Like Receptors in Human Diseases
Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797414/ https://www.ncbi.nlm.nih.gov/pubmed/24137163 http://dx.doi.org/10.3389/fimmu.2013.00333 |
_version_ | 1782287611612626944 |
---|---|
author | Zhong, Yifei Kinio, Anna Saleh, Maya |
author_facet | Zhong, Yifei Kinio, Anna Saleh, Maya |
author_sort | Zhong, Yifei |
collection | PubMed |
description | Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization into large macromolecular scaffolds and the rapid deployment of effector signaling cascades to restore homeostasis. While some NLRs operate by recruiting and activating inflammatory caspases into inflammasomes, others trigger inflammation via alternative routes including the nuclear factor-κB, mitogen-activated protein kinase, and regulatory factor pathways. The critical role of NLRs in development and physiology is demonstrated by their clear implications in human diseases. Mutations in the genes encoding NLRP3 or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide association studies (GWASs) have identified a number of risk alleles encompassing NLR genes in a host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease, asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in elderly women. Animal models have allowed the characterization of underlying effector mechanisms in a number of cases. In this review, we highlight the functions of NLRs in health and disease and discuss how the characterization of their molecular mechanisms provides new insights into therapeutic strategies for the management of inflammatory pathologies. |
format | Online Article Text |
id | pubmed-3797414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-37974142013-10-17 Functions of NOD-Like Receptors in Human Diseases Zhong, Yifei Kinio, Anna Saleh, Maya Front Immunol Immunology Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization into large macromolecular scaffolds and the rapid deployment of effector signaling cascades to restore homeostasis. While some NLRs operate by recruiting and activating inflammatory caspases into inflammasomes, others trigger inflammation via alternative routes including the nuclear factor-κB, mitogen-activated protein kinase, and regulatory factor pathways. The critical role of NLRs in development and physiology is demonstrated by their clear implications in human diseases. Mutations in the genes encoding NLRP3 or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide association studies (GWASs) have identified a number of risk alleles encompassing NLR genes in a host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease, asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in elderly women. Animal models have allowed the characterization of underlying effector mechanisms in a number of cases. In this review, we highlight the functions of NLRs in health and disease and discuss how the characterization of their molecular mechanisms provides new insights into therapeutic strategies for the management of inflammatory pathologies. Frontiers Media S.A. 2013-10-16 /pmc/articles/PMC3797414/ /pubmed/24137163 http://dx.doi.org/10.3389/fimmu.2013.00333 Text en Copyright © 2013 Zhong, Kinio and Saleh. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Zhong, Yifei Kinio, Anna Saleh, Maya Functions of NOD-Like Receptors in Human Diseases |
title | Functions of NOD-Like Receptors in Human Diseases |
title_full | Functions of NOD-Like Receptors in Human Diseases |
title_fullStr | Functions of NOD-Like Receptors in Human Diseases |
title_full_unstemmed | Functions of NOD-Like Receptors in Human Diseases |
title_short | Functions of NOD-Like Receptors in Human Diseases |
title_sort | functions of nod-like receptors in human diseases |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797414/ https://www.ncbi.nlm.nih.gov/pubmed/24137163 http://dx.doi.org/10.3389/fimmu.2013.00333 |
work_keys_str_mv | AT zhongyifei functionsofnodlikereceptorsinhumandiseases AT kinioanna functionsofnodlikereceptorsinhumandiseases AT salehmaya functionsofnodlikereceptorsinhumandiseases |