Cargando…
The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages
The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797505/ https://www.ncbi.nlm.nih.gov/pubmed/24223296 http://dx.doi.org/10.1002/ece3.730 |
_version_ | 1782287627263672320 |
---|---|
author | Letarov, A V Krisch, H M |
author_facet | Letarov, A V Krisch, H M |
author_sort | Letarov, A V |
collection | PubMed |
description | The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes. |
format | Online Article Text |
id | pubmed-3797505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-37975052013-11-12 The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages Letarov, A V Krisch, H M Ecol Evol Hypotheses The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes. Blackwell Publishing Ltd 2013-09 2013-09-01 /pmc/articles/PMC3797505/ /pubmed/24223296 http://dx.doi.org/10.1002/ece3.730 Text en © 2013 Published by John Wiley & Sons Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Hypotheses Letarov, A V Krisch, H M The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages |
title | The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages |
title_full | The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages |
title_fullStr | The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages |
title_full_unstemmed | The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages |
title_short | The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages |
title_sort | episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of t4-like phages |
topic | Hypotheses |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797505/ https://www.ncbi.nlm.nih.gov/pubmed/24223296 http://dx.doi.org/10.1002/ece3.730 |
work_keys_str_mv | AT letarovav theepisodicevolutionoffibritintracesofancientglobalenvironmentalalterationsmayremaininthegenomesoft4likephages AT krischhm theepisodicevolutionoffibritintracesofancientglobalenvironmentalalterationsmayremaininthegenomesoft4likephages AT letarovav episodicevolutionoffibritintracesofancientglobalenvironmentalalterationsmayremaininthegenomesoft4likephages AT krischhm episodicevolutionoffibritintracesofancientglobalenvironmentalalterationsmayremaininthegenomesoft4likephages |