Cargando…
Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation
Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797725/ https://www.ncbi.nlm.nih.gov/pubmed/24146769 http://dx.doi.org/10.1371/journal.pone.0075653 |
_version_ | 1782287654489948160 |
---|---|
author | Nunn, Brook L. Faux, Jessica F. Hippmann, Anna A. Maldonado, Maria T. Harvey, H. Rodger Goodlett, David R. Boyd, Philip W. Strzepek, Robert F. |
author_facet | Nunn, Brook L. Faux, Jessica F. Hippmann, Anna A. Maldonado, Maria T. Harvey, H. Rodger Goodlett, David R. Boyd, Philip W. Strzepek, Robert F. |
author_sort | Nunn, Brook L. |
collection | PubMed |
description | Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (F(v)/F(m)). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies. |
format | Online Article Text |
id | pubmed-3797725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37977252013-10-21 Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation Nunn, Brook L. Faux, Jessica F. Hippmann, Anna A. Maldonado, Maria T. Harvey, H. Rodger Goodlett, David R. Boyd, Philip W. Strzepek, Robert F. PLoS One Research Article Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (F(v)/F(m)). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies. Public Library of Science 2013-10-16 /pmc/articles/PMC3797725/ /pubmed/24146769 http://dx.doi.org/10.1371/journal.pone.0075653 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Nunn, Brook L. Faux, Jessica F. Hippmann, Anna A. Maldonado, Maria T. Harvey, H. Rodger Goodlett, David R. Boyd, Philip W. Strzepek, Robert F. Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation |
title | Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation |
title_full | Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation |
title_fullStr | Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation |
title_full_unstemmed | Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation |
title_short | Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation |
title_sort | diatom proteomics reveals unique acclimation strategies to mitigate fe limitation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797725/ https://www.ncbi.nlm.nih.gov/pubmed/24146769 http://dx.doi.org/10.1371/journal.pone.0075653 |
work_keys_str_mv | AT nunnbrookl diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT fauxjessicaf diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT hippmannannaa diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT maldonadomariat diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT harveyhrodger diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT goodlettdavidr diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT boydphilipw diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation AT strzepekrobertf diatomproteomicsrevealsuniqueacclimationstrategiestomitigatefelimitation |