Cargando…

Isolation of Clostridium perfringens Type B in an Individual at First Clinical Presentation of Multiple Sclerosis Provides Clues for Environmental Triggers of the Disease

We have isolated Clostridium perfringens type B, an epsilon toxin-secreting bacillus, from a young woman at clinical presentation of Multiple Sclerosis (MS) with actively enhancing lesions on brain MRI. This finding represents the first time that C. perfringens type B has been detected in a human. E...

Descripción completa

Detalles Bibliográficos
Autores principales: Rumah, Kareem Rashid, Linden, Jennifer, Fischetti, Vincent A., Vartanian, Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797790/
https://www.ncbi.nlm.nih.gov/pubmed/24146858
http://dx.doi.org/10.1371/journal.pone.0076359
Descripción
Sumario:We have isolated Clostridium perfringens type B, an epsilon toxin-secreting bacillus, from a young woman at clinical presentation of Multiple Sclerosis (MS) with actively enhancing lesions on brain MRI. This finding represents the first time that C. perfringens type B has been detected in a human. Epsilon toxin’s tropism for the blood-brain barrier (BBB) and binding to oligodendrocytes/myelin makes it a provocative candidate for nascent lesion formation in MS. We examined a well-characterized population of MS patients and healthy controls for carriage of C. perfringens toxinotypes in the gastrointestinal tract. The human commensal Clostridium perfringens type A was present in approximately 50% of healthy human controls compared to only 23% in MS patients. We examined sera and CSF obtained from two tissue banks and found that immunoreactivity to ETX is 10 times more prevalent in people with MS than in healthy controls, indicating prior exposure to ETX in the MS population. C. perfringens epsilon toxin fits mechanistically with nascent MS lesion formation since these lesions are characterized by BBB permeability and oligodendrocyte cell death in the absence of an adaptive immune infiltrate.