Cargando…
Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data()
We consider the solution of a second order elliptic PDE with inhomogeneous Dirichlet data by means of adaptive lowest-order FEM. As is usually done in practice, the given Dirichlet data are discretized by nodal interpolation. As model example serves the Poisson equation with mixed Dirichlet–Neumann...
Autores principales: | Feischl, M., Page, M., Praetorius, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Koninklijke Vlaamse Ingenieursvereniging
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798050/ https://www.ncbi.nlm.nih.gov/pubmed/24391306 http://dx.doi.org/10.1016/j.cam.2013.06.009 |
Ejemplares similares
-
A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling
por: Aurada, M., et al.
Publicado: (2012) -
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
por: Feischl, Michael, et al.
Publicado: (2016) -
Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator
por: Abert, Claas, et al.
Publicado: (2014) -
Axioms of adaptivity
por: Carstensen, C., et al.
Publicado: (2014) -
FEM–BEM coupling for the large-body limit in micromagnetics
por: Aurada, M., et al.
Publicado: (2015)