Cargando…

Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection

A rostrocaudal pathway connecting the temporal and parietal lobes was described in monkeys using autoradiography and was named the middle longitudinal fasciculus (MdLF). Recently, the use of diffusion tensor tractography has allowed it to be depicted in human volunteers. In the present study, a tech...

Descripción completa

Detalles Bibliográficos
Autores principales: Maldonado, Igor Lima, de Champfleur, Nicolas Menjot, Velut, Stéphane, Destrieux, Christophe, Zemmoura, Ilyess, Duffau, Hugues
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798102/
https://www.ncbi.nlm.nih.gov/pubmed/23621438
http://dx.doi.org/10.1111/joa.12055
Descripción
Sumario:A rostrocaudal pathway connecting the temporal and parietal lobes was described in monkeys using autoradiography and was named the middle longitudinal fasciculus (MdLF). Recently, the use of diffusion tensor tractography has allowed it to be depicted in human volunteers. In the present study, a technique of fiber dissection was used in 18 cadaveric human brains to investigate the presence of this fasciculus and to detail its anatomical relationships. On the basis of our findings, fiber dissection provides evidence for a long horizontal bundle medial to the arcuate fasciculus and extending to the superior temporal gyrus. Its fibers occupy the lateral-most layer of the upper portion of the stratum sagittale and partially cover the inferior fronto-occipital fasciculus, which is situated deeper and slightly inferiorly. Whereas MdLF fibers continue on a relatively superficial level to reach the superior temporal gyrus, the inferior fronto-occipital fasciculus penetrates the deep temporal white matter and crosses the insular lobe. Although diffusion tensor imaging suggests that the MdLF terminates in the angular gyrus, this was not confirmed by the present study. These long association fibers continue onward posteriorly into upper portions of the occipital lobe. Further studies are needed to understand the role of the MdLF in brain function.