Cargando…
A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data
Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based an...
Autores principales: | Gallopin, Mélina, Rau, Andrea, Jaffrézic, Florence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798343/ https://www.ncbi.nlm.nih.gov/pubmed/24147011 http://dx.doi.org/10.1371/journal.pone.0077503 |
Ejemplares similares
-
Data-based filtering for replicated high-throughput transcriptome sequencing experiments
por: Rau, Andrea, et al.
Publicado: (2013) -
A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data
por: Silva, Anjali, et al.
Publicado: (2019) -
Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data
por: Silva, Anjali, et al.
Publicado: (2023) -
Differential meta-analysis of RNA-seq data from multiple studies
por: Rau, Andrea, et al.
Publicado: (2014) -
A unified framework for the integration of multiple hierarchical clusterings or networks from multi-source data
por: Hulot, Audrey, et al.
Publicado: (2021)