Cargando…
Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound mode...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798606/ https://www.ncbi.nlm.nih.gov/pubmed/24146846 http://dx.doi.org/10.1371/journal.pone.0076263 |
_version_ | 1782287799519543296 |
---|---|
author | Dang, Ngoc A. Kuijper, Sjoukje Walters, Elisabetta Claassens, Mareli van Soolingen, Dick Vivo-Truyols, Gabriel Janssen, Hans-Gerd Kolk, Arend H. J. |
author_facet | Dang, Ngoc A. Kuijper, Sjoukje Walters, Elisabetta Claassens, Mareli van Soolingen, Dick Vivo-Truyols, Gabriel Janssen, Hans-Gerd Kolk, Arend H. J. |
author_sort | Dang, Ngoc A. |
collection | PubMed |
description | Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum. |
format | Online Article Text |
id | pubmed-3798606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37986062013-10-21 Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics Dang, Ngoc A. Kuijper, Sjoukje Walters, Elisabetta Claassens, Mareli van Soolingen, Dick Vivo-Truyols, Gabriel Janssen, Hans-Gerd Kolk, Arend H. J. PLoS One Research Article Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum. Public Library of Science 2013-10-17 /pmc/articles/PMC3798606/ /pubmed/24146846 http://dx.doi.org/10.1371/journal.pone.0076263 Text en © 2013 Dang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dang, Ngoc A. Kuijper, Sjoukje Walters, Elisabetta Claassens, Mareli van Soolingen, Dick Vivo-Truyols, Gabriel Janssen, Hans-Gerd Kolk, Arend H. J. Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics |
title | Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics |
title_full | Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics |
title_fullStr | Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics |
title_full_unstemmed | Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics |
title_short | Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics |
title_sort | validation of biomarkers for distinguishing mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography−mass spectrometry and chemometrics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798606/ https://www.ncbi.nlm.nih.gov/pubmed/24146846 http://dx.doi.org/10.1371/journal.pone.0076263 |
work_keys_str_mv | AT dangngoca validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT kuijpersjoukje validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT walterselisabetta validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT claassensmareli validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT vansoolingendick validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT vivotruyolsgabriel validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT janssenhansgerd validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT kolkarendhj validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics |