Cargando…

Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics

Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Ngoc A., Kuijper, Sjoukje, Walters, Elisabetta, Claassens, Mareli, van Soolingen, Dick, Vivo-Truyols, Gabriel, Janssen, Hans-Gerd, Kolk, Arend H. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798606/
https://www.ncbi.nlm.nih.gov/pubmed/24146846
http://dx.doi.org/10.1371/journal.pone.0076263
_version_ 1782287799519543296
author Dang, Ngoc A.
Kuijper, Sjoukje
Walters, Elisabetta
Claassens, Mareli
van Soolingen, Dick
Vivo-Truyols, Gabriel
Janssen, Hans-Gerd
Kolk, Arend H. J.
author_facet Dang, Ngoc A.
Kuijper, Sjoukje
Walters, Elisabetta
Claassens, Mareli
van Soolingen, Dick
Vivo-Truyols, Gabriel
Janssen, Hans-Gerd
Kolk, Arend H. J.
author_sort Dang, Ngoc A.
collection PubMed
description Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum.
format Online
Article
Text
id pubmed-3798606
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37986062013-10-21 Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics Dang, Ngoc A. Kuijper, Sjoukje Walters, Elisabetta Claassens, Mareli van Soolingen, Dick Vivo-Truyols, Gabriel Janssen, Hans-Gerd Kolk, Arend H. J. PLoS One Research Article Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum. Public Library of Science 2013-10-17 /pmc/articles/PMC3798606/ /pubmed/24146846 http://dx.doi.org/10.1371/journal.pone.0076263 Text en © 2013 Dang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Dang, Ngoc A.
Kuijper, Sjoukje
Walters, Elisabetta
Claassens, Mareli
van Soolingen, Dick
Vivo-Truyols, Gabriel
Janssen, Hans-Gerd
Kolk, Arend H. J.
Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
title Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
title_full Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
title_fullStr Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
title_full_unstemmed Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
title_short Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics
title_sort validation of biomarkers for distinguishing mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography−mass spectrometry and chemometrics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798606/
https://www.ncbi.nlm.nih.gov/pubmed/24146846
http://dx.doi.org/10.1371/journal.pone.0076263
work_keys_str_mv AT dangngoca validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT kuijpersjoukje validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT walterselisabetta validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT claassensmareli validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT vansoolingendick validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT vivotruyolsgabriel validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT janssenhansgerd validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT kolkarendhj validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics