Cargando…

Multi-Colour Nanowire Photonic Crystal Laser Pixels

Emerging applications such as solid-state lighting and display technologies require micro-scale vertically emitting lasers with controllable distinct lasing wavelengths and broad wavelength tunability arranged in desired geometrical patterns to form “super-pixels”. Conventional edge-emitting lasers...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright, Jeremy B., Liu, Sheng, Wang, George T., Li, Qiming, Benz, Alexander, Koleske, Daniel D., Lu, Ping, Xu, Huiwen, Lester, Luke, Luk, Ting S., Brener, Igal, Subramania, Ganapathi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798884/
https://www.ncbi.nlm.nih.gov/pubmed/24135975
http://dx.doi.org/10.1038/srep02982
_version_ 1782287829335801856
author Wright, Jeremy B.
Liu, Sheng
Wang, George T.
Li, Qiming
Benz, Alexander
Koleske, Daniel D.
Lu, Ping
Xu, Huiwen
Lester, Luke
Luk, Ting S.
Brener, Igal
Subramania, Ganapathi
author_facet Wright, Jeremy B.
Liu, Sheng
Wang, George T.
Li, Qiming
Benz, Alexander
Koleske, Daniel D.
Lu, Ping
Xu, Huiwen
Lester, Luke
Luk, Ting S.
Brener, Igal
Subramania, Ganapathi
author_sort Wright, Jeremy B.
collection PubMed
description Emerging applications such as solid-state lighting and display technologies require micro-scale vertically emitting lasers with controllable distinct lasing wavelengths and broad wavelength tunability arranged in desired geometrical patterns to form “super-pixels”. Conventional edge-emitting lasers and current surface-emitting lasers that require abrupt changes in semiconductor bandgaps or cavity length are not a viable solution. Here, we successfully address these challenges by introducing a new paradigm that extends the laser tuning range additively by employing multiple monolithically grown gain sections each with a different emission centre wavelength. We demonstrate this using broad gain-bandwidth III-nitride multiple quantum well (MQW) heterostructures and a novel top-down nanowire photonic crystal nanofabrication. We obtain single-mode lasing in the blue-violet spectral region with a remarkable 60 nm of tuning (or 16% of the nominal centre wavelength) that is determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
format Online
Article
Text
id pubmed-3798884
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-37988842013-10-18 Multi-Colour Nanowire Photonic Crystal Laser Pixels Wright, Jeremy B. Liu, Sheng Wang, George T. Li, Qiming Benz, Alexander Koleske, Daniel D. Lu, Ping Xu, Huiwen Lester, Luke Luk, Ting S. Brener, Igal Subramania, Ganapathi Sci Rep Article Emerging applications such as solid-state lighting and display technologies require micro-scale vertically emitting lasers with controllable distinct lasing wavelengths and broad wavelength tunability arranged in desired geometrical patterns to form “super-pixels”. Conventional edge-emitting lasers and current surface-emitting lasers that require abrupt changes in semiconductor bandgaps or cavity length are not a viable solution. Here, we successfully address these challenges by introducing a new paradigm that extends the laser tuning range additively by employing multiple monolithically grown gain sections each with a different emission centre wavelength. We demonstrate this using broad gain-bandwidth III-nitride multiple quantum well (MQW) heterostructures and a novel top-down nanowire photonic crystal nanofabrication. We obtain single-mode lasing in the blue-violet spectral region with a remarkable 60 nm of tuning (or 16% of the nominal centre wavelength) that is determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum. Nature Publishing Group 2013-10-18 /pmc/articles/PMC3798884/ /pubmed/24135975 http://dx.doi.org/10.1038/srep02982 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-Non-Commercial-ShareAlike 3.0 Unported licence. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Wright, Jeremy B.
Liu, Sheng
Wang, George T.
Li, Qiming
Benz, Alexander
Koleske, Daniel D.
Lu, Ping
Xu, Huiwen
Lester, Luke
Luk, Ting S.
Brener, Igal
Subramania, Ganapathi
Multi-Colour Nanowire Photonic Crystal Laser Pixels
title Multi-Colour Nanowire Photonic Crystal Laser Pixels
title_full Multi-Colour Nanowire Photonic Crystal Laser Pixels
title_fullStr Multi-Colour Nanowire Photonic Crystal Laser Pixels
title_full_unstemmed Multi-Colour Nanowire Photonic Crystal Laser Pixels
title_short Multi-Colour Nanowire Photonic Crystal Laser Pixels
title_sort multi-colour nanowire photonic crystal laser pixels
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798884/
https://www.ncbi.nlm.nih.gov/pubmed/24135975
http://dx.doi.org/10.1038/srep02982
work_keys_str_mv AT wrightjeremyb multicolournanowirephotoniccrystallaserpixels
AT liusheng multicolournanowirephotoniccrystallaserpixels
AT wanggeorget multicolournanowirephotoniccrystallaserpixels
AT liqiming multicolournanowirephotoniccrystallaserpixels
AT benzalexander multicolournanowirephotoniccrystallaserpixels
AT koleskedanield multicolournanowirephotoniccrystallaserpixels
AT luping multicolournanowirephotoniccrystallaserpixels
AT xuhuiwen multicolournanowirephotoniccrystallaserpixels
AT lesterluke multicolournanowirephotoniccrystallaserpixels
AT luktings multicolournanowirephotoniccrystallaserpixels
AT brenerigal multicolournanowirephotoniccrystallaserpixels
AT subramaniaganapathi multicolournanowirephotoniccrystallaserpixels