Cargando…

Combinatorial Engineering of Dextransucrase Specificity

We used combinatorial engineering to investigate the relationships between structure and linkage specificity of the dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, and to generate variants with altered specificity. Sequence and structural analysis of glycoside-hydrolase family 70 en...

Descripción completa

Detalles Bibliográficos
Autores principales: Irague, Romain, Tarquis, Laurence, André, Isabelle, Moulis, Claire, Morel, Sandrine, Monsan, Pierre, Potocki-Véronèse, Gabrielle, Remaud-Siméon, Magali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799614/
https://www.ncbi.nlm.nih.gov/pubmed/24204991
http://dx.doi.org/10.1371/journal.pone.0077837
_version_ 1782287901116071936
author Irague, Romain
Tarquis, Laurence
André, Isabelle
Moulis, Claire
Morel, Sandrine
Monsan, Pierre
Potocki-Véronèse, Gabrielle
Remaud-Siméon, Magali
author_facet Irague, Romain
Tarquis, Laurence
André, Isabelle
Moulis, Claire
Morel, Sandrine
Monsan, Pierre
Potocki-Véronèse, Gabrielle
Remaud-Siméon, Magali
author_sort Irague, Romain
collection PubMed
description We used combinatorial engineering to investigate the relationships between structure and linkage specificity of the dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, and to generate variants with altered specificity. Sequence and structural analysis of glycoside-hydrolase family 70 enzymes led to eight amino acids (D306, F353, N404, W440, D460, H463, T464 and S512) being targeted, randomized by saturation mutagenesis and simultaneously recombined. Screening of two libraries totaling 3.6.10(4) clones allowed the isolation of a toolbox comprising 81 variants which synthesize high molecular weight α-glucans with different proportions of α(1→3) linkages ranging from 3 to 20 %. Mutant sequence analysis, biochemical characterization and molecular modelling studies revealed the previously unknown role of peptide (460)DYVHT(464) in DSR-S linkage specificity. This peptide sequence together with residue S512 contribute to defining +2 subsite topology, which may be critical for the enzyme regiospecificity.
format Online
Article
Text
id pubmed-3799614
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37996142013-11-07 Combinatorial Engineering of Dextransucrase Specificity Irague, Romain Tarquis, Laurence André, Isabelle Moulis, Claire Morel, Sandrine Monsan, Pierre Potocki-Véronèse, Gabrielle Remaud-Siméon, Magali PLoS One Research Article We used combinatorial engineering to investigate the relationships between structure and linkage specificity of the dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, and to generate variants with altered specificity. Sequence and structural analysis of glycoside-hydrolase family 70 enzymes led to eight amino acids (D306, F353, N404, W440, D460, H463, T464 and S512) being targeted, randomized by saturation mutagenesis and simultaneously recombined. Screening of two libraries totaling 3.6.10(4) clones allowed the isolation of a toolbox comprising 81 variants which synthesize high molecular weight α-glucans with different proportions of α(1→3) linkages ranging from 3 to 20 %. Mutant sequence analysis, biochemical characterization and molecular modelling studies revealed the previously unknown role of peptide (460)DYVHT(464) in DSR-S linkage specificity. This peptide sequence together with residue S512 contribute to defining +2 subsite topology, which may be critical for the enzyme regiospecificity. Public Library of Science 2013-10-18 /pmc/articles/PMC3799614/ /pubmed/24204991 http://dx.doi.org/10.1371/journal.pone.0077837 Text en © 2013 Irague et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Irague, Romain
Tarquis, Laurence
André, Isabelle
Moulis, Claire
Morel, Sandrine
Monsan, Pierre
Potocki-Véronèse, Gabrielle
Remaud-Siméon, Magali
Combinatorial Engineering of Dextransucrase Specificity
title Combinatorial Engineering of Dextransucrase Specificity
title_full Combinatorial Engineering of Dextransucrase Specificity
title_fullStr Combinatorial Engineering of Dextransucrase Specificity
title_full_unstemmed Combinatorial Engineering of Dextransucrase Specificity
title_short Combinatorial Engineering of Dextransucrase Specificity
title_sort combinatorial engineering of dextransucrase specificity
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799614/
https://www.ncbi.nlm.nih.gov/pubmed/24204991
http://dx.doi.org/10.1371/journal.pone.0077837
work_keys_str_mv AT iragueromain combinatorialengineeringofdextransucrasespecificity
AT tarquislaurence combinatorialengineeringofdextransucrasespecificity
AT andreisabelle combinatorialengineeringofdextransucrasespecificity
AT moulisclaire combinatorialengineeringofdextransucrasespecificity
AT morelsandrine combinatorialengineeringofdextransucrasespecificity
AT monsanpierre combinatorialengineeringofdextransucrasespecificity
AT potockiveronesegabrielle combinatorialengineeringofdextransucrasespecificity
AT remaudsimeonmagali combinatorialengineeringofdextransucrasespecificity