Cargando…

Delineating the Extracellular Water-Accessible Surface of the Proton-Coupled Folate Transporter

The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Duddempudi, Phaneendra Kumar, Goyal, Raman, Date, Swapneeta Sanjay, Jansen, Michaela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799626/
https://www.ncbi.nlm.nih.gov/pubmed/24205192
http://dx.doi.org/10.1371/journal.pone.0078301
Descripción
Sumario:The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity - 14% or less – between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology / threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepT(St) are most promising for further refinement.