Cargando…
Saltatory remodeling of Hox chromatin in response to rostro-caudal patterning signals
Hox genes controlling motor neuron subtype identity are expressed in rostro-caudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains, controlled by rostro-caudal patterning signals that...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799941/ https://www.ncbi.nlm.nih.gov/pubmed/23955559 http://dx.doi.org/10.1038/nn.3490 |
Sumario: | Hox genes controlling motor neuron subtype identity are expressed in rostro-caudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains, controlled by rostro-caudal patterning signals that trigger rapid, domain-wide clearance of repressive H3K27me3 Polycomb modifications. Treatment of differentiating mouse neural progenitors with retinoic acid (RA) leads to activation and binding of RA receptors (RARs) to Hox1-5 chromatin domains, followed by a rapid domain-wide removal of H3K27me3 and acquisition of cervical spinal identity. Wnt and FGF signals induce expression of Cdx2 transcription factor that binds and clears H3K27me3 from Hox1-9 chromatin domains, leading to specification of brachial/thoracic spinal identity. We propose that rapid clearance of repressive modifications in response to transient patterning signals encodes global rostro-caudal neural identity and that maintenance of these chromatin domains ensures transmission of the positional identity to postmitotic motor neurons later in development. |
---|