Cargando…

Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation

Interaction with the solvent plays a critical role in modulating the structure and dynamics of a protein. Because of the heterogeneity of the interaction strength, it is difficult to identify multi-scale structural response. Using a coarse-grained Monte Carlo approach, we study the structure and dyn...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandey, Ras B., Farmer, Barry L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799992/
https://www.ncbi.nlm.nih.gov/pubmed/24204592
http://dx.doi.org/10.1371/journal.pone.0076069
_version_ 1782287937143046144
author Pandey, Ras B.
Farmer, Barry L.
author_facet Pandey, Ras B.
Farmer, Barry L.
author_sort Pandey, Ras B.
collection PubMed
description Interaction with the solvent plays a critical role in modulating the structure and dynamics of a protein. Because of the heterogeneity of the interaction strength, it is difficult to identify multi-scale structural response. Using a coarse-grained Monte Carlo approach, we study the structure and dynamics of a protein (H3.1) in effective solvent media. The structural response is examined as a function of the solvent-residue interaction strength (based on hydropathy index) in a range of temperatures (spanning low to high) involving a knowledge-based (Miyazawa-Jernigan(MJ)) residue-residue interaction. The protein relaxes rapidly from an initial random configuration into a quasi-static structure at low temperatures while it continues to diffuse at high temperatures with fluctuating conformation. The radius of gyration (R(g)) of the protein responds non-monotonically to solvent interaction, i.e., on increasing the residue-solvent interaction strength (f(s)), the increase in R(g) (f(s)≤f(sc)) is followed by decay (f(s)≥f(sc)) with a maximum at a characteristic value (f(sc)) of the interaction. Raising the temperature leads to wider spread of the distribution of the radius of gyration with higher magnitude of f(sc). The effect of solvent on the multi-scale (λ: residue to R(g)) structures of the protein is examined by analyzing the structure factor (S( q ),|q| = 2π/λ is the wave vector of wavelength, λ) in detail. Random-coil to globular transition with temperature of unsolvated protein (H3.1) is dramatically altered by the solvent at low temperature while a systematic change in structure and scale is observed on increasing the temperature. The interaction energy profile of the residues is not sufficient to predict its mobility in the solvent. Fine-grain representation of protein with two-node and three-node residue enhances the structural resolution; results of the fine-grained simulations are consistent with the finding described above of the coarse-grained description with one-node residue.
format Online
Article
Text
id pubmed-3799992
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37999922013-11-07 Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation Pandey, Ras B. Farmer, Barry L. PLoS One Research Article Interaction with the solvent plays a critical role in modulating the structure and dynamics of a protein. Because of the heterogeneity of the interaction strength, it is difficult to identify multi-scale structural response. Using a coarse-grained Monte Carlo approach, we study the structure and dynamics of a protein (H3.1) in effective solvent media. The structural response is examined as a function of the solvent-residue interaction strength (based on hydropathy index) in a range of temperatures (spanning low to high) involving a knowledge-based (Miyazawa-Jernigan(MJ)) residue-residue interaction. The protein relaxes rapidly from an initial random configuration into a quasi-static structure at low temperatures while it continues to diffuse at high temperatures with fluctuating conformation. The radius of gyration (R(g)) of the protein responds non-monotonically to solvent interaction, i.e., on increasing the residue-solvent interaction strength (f(s)), the increase in R(g) (f(s)≤f(sc)) is followed by decay (f(s)≥f(sc)) with a maximum at a characteristic value (f(sc)) of the interaction. Raising the temperature leads to wider spread of the distribution of the radius of gyration with higher magnitude of f(sc). The effect of solvent on the multi-scale (λ: residue to R(g)) structures of the protein is examined by analyzing the structure factor (S( q ),|q| = 2π/λ is the wave vector of wavelength, λ) in detail. Random-coil to globular transition with temperature of unsolvated protein (H3.1) is dramatically altered by the solvent at low temperature while a systematic change in structure and scale is observed on increasing the temperature. The interaction energy profile of the residues is not sufficient to predict its mobility in the solvent. Fine-grain representation of protein with two-node and three-node residue enhances the structural resolution; results of the fine-grained simulations are consistent with the finding described above of the coarse-grained description with one-node residue. Public Library of Science 2013-10-18 /pmc/articles/PMC3799992/ /pubmed/24204592 http://dx.doi.org/10.1371/journal.pone.0076069 Text en © 2013 Pandey, Farmer http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Pandey, Ras B.
Farmer, Barry L.
Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation
title Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation
title_full Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation
title_fullStr Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation
title_full_unstemmed Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation
title_short Conformational Response to Solvent Interaction and Temperature of a Protein (Histone h3.1) by a Multi-Grained Monte Carlo Simulation
title_sort conformational response to solvent interaction and temperature of a protein (histone h3.1) by a multi-grained monte carlo simulation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799992/
https://www.ncbi.nlm.nih.gov/pubmed/24204592
http://dx.doi.org/10.1371/journal.pone.0076069
work_keys_str_mv AT pandeyrasb conformationalresponsetosolventinteractionandtemperatureofaproteinhistoneh31byamultigrainedmontecarlosimulation
AT farmerbarryl conformationalresponsetosolventinteractionandtemperatureofaproteinhistoneh31byamultigrainedmontecarlosimulation