Cargando…
Ultraviolet-visible light spectral transmittance of rabbit corneas after riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking
PURPOSE: To determine the effect of riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking on the transmission of the ultraviolet-visible (UV-VIS) light spectrum through the cornea. METHODS: Twelve New Zealand white male rabbits were used in this research. Cross-linking was performed unila...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Vision
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800280/ https://www.ncbi.nlm.nih.gov/pubmed/24146544 |
Sumario: | PURPOSE: To determine the effect of riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking on the transmission of the ultraviolet-visible (UV-VIS) light spectrum through the cornea. METHODS: Twelve New Zealand white male rabbits were used in this research. Cross-linking was performed unilaterally on the right eyes of the animals while only the epithelium was removed on the left eyes as the control. Seven weeks after cross-linking, the animals were euthanized, and the enucleated eyes were processed for transmission spectroscopy. To confirm that the cross-linking procedures was done successfully on the right corneas, the tensile force-extension relationship was measured using six corneas from three of the rabbits after the transmission spectrum was determined. RESULTS: Seven weeks after cross-linking, ten of the 12 rabbits had clear corneas in the cross-linked and control eyes. The two rabbits with neovascularization and granular opacities in the right corneas were not included in subsequent measurements. In the cross-linked corneas, transmittance was 87.57% at 650 nm, and decreased continuously as the wavelength shortened. From 315 nm, the transmittance rapidly decreased and was 35.52% at 300 nm. In the control corneas, transmittance was 95.95% at 650 nm and decreased continuously as the wavelength shortened. Below 315 nm, the transmittance rapidly decreased, to 40.29% at 300 nm. The transmittance of the cross-linking corneas was 10%–20% lower than that of the control corneas. The difference was 8.38% at 650 nm and increased as the wavelength shortened, reaching a maximum of 20.59% at 320 nm, and decreased rapidly to 4.77% at 300 nm. The tensile force-extension relationship showed that a greater force was necessary to extend the cross-linking corneas over 500 µm than that of the control corneas. CONCLUSIONS: The transmittance of the cross-linked corneas was 10%–20% lower than that of the control corneas. The difference increased as the wavelength decrease, reaching a maximum at 320 nm and then decreasing rapidly. Ultraviolet collagen cross-linking exhibited a protective effect against ultraviolet penetration. |
---|