Cargando…
[6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway
To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ) molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800596/ https://www.ncbi.nlm.nih.gov/pubmed/24204396 http://dx.doi.org/10.1155/2013/761852 |
_version_ | 1782287995886370816 |
---|---|
author | Kim, Sung Ok Kim, Mi Ryeo |
author_facet | Kim, Sung Ok Kim, Mi Ryeo |
author_sort | Kim, Sung Ok |
collection | PubMed |
description | To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ) molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP) activities; transepithelial electrical resistance (TER) and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO-) 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK) pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells. |
format | Online Article Text |
id | pubmed-3800596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-38005962013-11-07 [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway Kim, Sung Ok Kim, Mi Ryeo Evid Based Complement Alternat Med Research Article To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ) molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP) activities; transepithelial electrical resistance (TER) and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO-) 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK) pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells. Hindawi Publishing Corporation 2013 2013-09-24 /pmc/articles/PMC3800596/ /pubmed/24204396 http://dx.doi.org/10.1155/2013/761852 Text en Copyright © 2013 S. O. Kim and M. R. Kim. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kim, Sung Ok Kim, Mi Ryeo [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway |
title | [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway |
title_full | [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway |
title_fullStr | [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway |
title_full_unstemmed | [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway |
title_short | [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway |
title_sort | [6]-gingerol prevents disassembly of cell junctions and activities of mmps in invasive human pancreas cancer cells through erk/nf-κb/snail signal transduction pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800596/ https://www.ncbi.nlm.nih.gov/pubmed/24204396 http://dx.doi.org/10.1155/2013/761852 |
work_keys_str_mv | AT kimsungok 6gingerolpreventsdisassemblyofcelljunctionsandactivitiesofmmpsininvasivehumanpancreascancercellsthrougherknfkbsnailsignaltransductionpathway AT kimmiryeo 6gingerolpreventsdisassemblyofcelljunctionsandactivitiesofmmpsininvasivehumanpancreascancercellsthrougherknfkbsnailsignaltransductionpathway |