Cargando…
Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells
PURPOSE: Fanconi anemia complementation group F (FANCF) is a key factor to maintaining the function of Fanconi anaemia/BRCA (FA/BRCA) pathway, a DNA-damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. In the present study, we evaluated the chemose...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Breast Cancer Society
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800725/ https://www.ncbi.nlm.nih.gov/pubmed/24155758 http://dx.doi.org/10.4048/jbc.2013.16.3.291 |
_version_ | 1782288019987890176 |
---|---|
author | Yu, Jiankun Zhao, Lin Li, Yanlin Li, Na He, Miao Bai, Xuefeng Yu, Zhaojin Zheng, Zhihong Mi, Xiaoyi Wang, Enhua Wei, Minjie |
author_facet | Yu, Jiankun Zhao, Lin Li, Yanlin Li, Na He, Miao Bai, Xuefeng Yu, Zhaojin Zheng, Zhihong Mi, Xiaoyi Wang, Enhua Wei, Minjie |
author_sort | Yu, Jiankun |
collection | PubMed |
description | PURPOSE: Fanconi anemia complementation group F (FANCF) is a key factor to maintaining the function of Fanconi anaemia/BRCA (FA/BRCA) pathway, a DNA-damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. In the present study, we evaluated the chemosensitization effect of FANCF in breast cancer cells. METHODS: We performed specific knockdown of the endogenous FANCF in breast cancer cells by transfecting the cells with an FANCF short hairpin RNA (shRNA) vector. Cell viability was measured with a Cell Counting Kit-8, and DNA damage was assessed with the alkaline comet assay. The apoptosis, cell cycle, and drug accumulation were measured by flow cytometric analysis. Protein expression levels were determined by Western blot analysis, using specific antibodies. RESULTS: The analyses of two breast cancer cell lines (MCF-7 and MDA-MB-435S) demonstrated that the FANCF shRNA could effectively block the FA/BRCA pathway through the inhibition of Fanconi anemia complementation group D2 ubiquitination. Moreover, FANCF silencing potentiated the sensitivity of cells to mitomycin C (MMC), where combined FANCF shRNA/MMC treatment inhibited cell proliferation, induced S-phase arrest, apoptosis, and DNA fragmentation, and reduced the mitochondrial membrane potential, compared with MMC treatment alone. CONCLUSION: Taken together, this study demonstrates that the inhibition of FANCF by its shRNA leads to a synergistic enhancement of MMC cytotoxicity in breast cancer cells. These results suggest that the inhibition of the FA/BRCA pathway is a useful adjunct to cytotoxic chemotherapy for the treatment of breast cancer. |
format | Online Article Text |
id | pubmed-3800725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Korean Breast Cancer Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-38007252013-10-23 Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells Yu, Jiankun Zhao, Lin Li, Yanlin Li, Na He, Miao Bai, Xuefeng Yu, Zhaojin Zheng, Zhihong Mi, Xiaoyi Wang, Enhua Wei, Minjie J Breast Cancer Original Article PURPOSE: Fanconi anemia complementation group F (FANCF) is a key factor to maintaining the function of Fanconi anaemia/BRCA (FA/BRCA) pathway, a DNA-damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. In the present study, we evaluated the chemosensitization effect of FANCF in breast cancer cells. METHODS: We performed specific knockdown of the endogenous FANCF in breast cancer cells by transfecting the cells with an FANCF short hairpin RNA (shRNA) vector. Cell viability was measured with a Cell Counting Kit-8, and DNA damage was assessed with the alkaline comet assay. The apoptosis, cell cycle, and drug accumulation were measured by flow cytometric analysis. Protein expression levels were determined by Western blot analysis, using specific antibodies. RESULTS: The analyses of two breast cancer cell lines (MCF-7 and MDA-MB-435S) demonstrated that the FANCF shRNA could effectively block the FA/BRCA pathway through the inhibition of Fanconi anemia complementation group D2 ubiquitination. Moreover, FANCF silencing potentiated the sensitivity of cells to mitomycin C (MMC), where combined FANCF shRNA/MMC treatment inhibited cell proliferation, induced S-phase arrest, apoptosis, and DNA fragmentation, and reduced the mitochondrial membrane potential, compared with MMC treatment alone. CONCLUSION: Taken together, this study demonstrates that the inhibition of FANCF by its shRNA leads to a synergistic enhancement of MMC cytotoxicity in breast cancer cells. These results suggest that the inhibition of the FA/BRCA pathway is a useful adjunct to cytotoxic chemotherapy for the treatment of breast cancer. Korean Breast Cancer Society 2013-09 2013-09-30 /pmc/articles/PMC3800725/ /pubmed/24155758 http://dx.doi.org/10.4048/jbc.2013.16.3.291 Text en © 2013 Korean Breast Cancer Society. All rights reserved. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Yu, Jiankun Zhao, Lin Li, Yanlin Li, Na He, Miao Bai, Xuefeng Yu, Zhaojin Zheng, Zhihong Mi, Xiaoyi Wang, Enhua Wei, Minjie Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells |
title | Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells |
title_full | Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells |
title_fullStr | Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells |
title_full_unstemmed | Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells |
title_short | Silencing of Fanconi Anemia Complementation Group F Exhibits Potent Chemosensitization of Mitomycin C Activity in Breast Cancer Cells |
title_sort | silencing of fanconi anemia complementation group f exhibits potent chemosensitization of mitomycin c activity in breast cancer cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800725/ https://www.ncbi.nlm.nih.gov/pubmed/24155758 http://dx.doi.org/10.4048/jbc.2013.16.3.291 |
work_keys_str_mv | AT yujiankun silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT zhaolin silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT liyanlin silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT lina silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT hemiao silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT baixuefeng silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT yuzhaojin silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT zhengzhihong silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT mixiaoyi silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT wangenhua silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells AT weiminjie silencingoffanconianemiacomplementationgroupfexhibitspotentchemosensitizationofmitomycincactivityinbreastcancercells |