Cargando…

Effect of Electroacupuncture at ST36 on Gastric-Related Neurons in Spinal Dorsal Horn and Nucleus Tractus Solitarius

The aim of this study was to observe the effect of electroacupuncture (EA) at the ST36 acupoint on the firing rate of gastric-related neurons in the spinal dorsal horn (SDH) and nucleus tractus solitarius (NTS). There were different effects of gastric distention in SDH and NTS in 46 male Sprague-Daw...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoyu, Shi, Hong, Shang, Hongyan, He, Wei, Chen, Shuli, Litscher, Gerhard, Gaischek, Ingrid, Jing, Xianghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804039/
https://www.ncbi.nlm.nih.gov/pubmed/24191172
http://dx.doi.org/10.1155/2013/912898
Descripción
Sumario:The aim of this study was to observe the effect of electroacupuncture (EA) at the ST36 acupoint on the firing rate of gastric-related neurons in the spinal dorsal horn (SDH) and nucleus tractus solitarius (NTS). There were different effects of gastric distention in SDH and NTS in 46 male Sprague-Dawley rats. In 10 excitatory neurons in SDH, most of the neurons were inhibited by homolateral EA. The firing rates decreased significantly (P < 0.05) in 10 excitatory gastric-related neurons in NTS; the firing rates of 6 neurons were further excited by homolateral EA, with a significant increase of the firing rates (P < 0.05); all inhibitory gastric-related neurons in NTS were excited by EA. The inhibition rate of homolateral EA was significantly increased in comparison with contralateral EA in gastric-related neurons of SDH (P < 0.05). There was no significant difference between homolateral and contralateral EA in gastric-related neurons of NTS. EA at ST36 changes the firing rate of gastric-related neurons in SDH and NTS. However, there are some differences in responsive mode in these neurons. The existence of these differences could be one of the physiological foundations of diversity and complexity in EA effects.