Cargando…

A Method to Dynamic Stochastic Multicriteria Decision Making with Log-Normally Distributed Random Variables

We investigate the dynamic stochastic multicriteria decision making (SMCDM) problems, in which the criterion values take the form of log-normally distributed random variables, and the argument information is collected from different periods. We propose two new geometric aggregation operators, such a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin-Fan, Wang, Jian-Qiang, Deng, Sheng-Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804394/
https://www.ncbi.nlm.nih.gov/pubmed/24223501
http://dx.doi.org/10.1155/2013/202085
Descripción
Sumario:We investigate the dynamic stochastic multicriteria decision making (SMCDM) problems, in which the criterion values take the form of log-normally distributed random variables, and the argument information is collected from different periods. We propose two new geometric aggregation operators, such as the log-normal distribution weighted geometric (LNDWG) operator and the dynamic log-normal distribution weighted geometric (DLNDWG) operator, and develop a method for dynamic SMCDM with log-normally distributed random variables. This method uses the DLNDWG operator and the LNDWG operator to aggregate the log-normally distributed criterion values, utilizes the entropy model of Shannon to generate the time weight vector, and utilizes the expectation values and variances of log-normal distributions to rank the alternatives and select the best one. Finally, an example is given to illustrate the feasibility and effectiveness of this developed method.