Cargando…
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix [Image: see text] to the product of two lower-rank nonnegative factor matrices, i.e., [Image: see text] and [Image: see text] ([Image: see text]) and aims to preserve the local geometric structure of the d...
Autores principales: | Guan, Naiyang, Wei, Lei, Luo, Zhigang, Tao, Dacheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804530/ https://www.ncbi.nlm.nih.gov/pubmed/24204761 http://dx.doi.org/10.1371/journal.pone.0077162 |
Ejemplares similares
-
Correction: Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2014) -
A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering
por: Zhu, Rong, et al.
Publicado: (2017) -
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020) -
Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems
por: Zdunek, Rafal, et al.
Publicado: (2008) -
Discriminant Projective Non-Negative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013)