Cargando…
Statistical evaluation of synchronous spike patterns extracted by frequent item set mining
We recently proposed frequent itemset mining (FIM) as a method to perform an optimized search for patterns of synchronous spikes (item sets) in massively parallel spike trains. This search outputs the occurrence count (support) of individual patterns that are not trivially explained by the counts of...
Autores principales: | Torre, Emiliano, Picado-Muiño, David, Denker, Michael, Borgelt, Christian, Grün, Sonja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805944/ https://www.ncbi.nlm.nih.gov/pubmed/24167487 http://dx.doi.org/10.3389/fncom.2013.00132 |
Ejemplares similares
-
Finding neural assemblies with frequent item set mining
por: Picado-Muiño, David, et al.
Publicado: (2013) -
Cell assembly detection with frequent item set mining
por: Borgelt, Christian, et al.
Publicado: (2012) -
ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains
por: Torre, Emiliano, et al.
Publicado: (2016) -
Test Statistics for the Identification of Assembly Neurons in Parallel Spike Trains
por: Picado Muiño, David, et al.
Publicado: (2015) -
Methods for identification of spike patterns in massively parallel spike trains
por: Quaglio, Pietro, et al.
Publicado: (2018)