Cargando…

Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions

We report electrically controlled membranes which become permeable when an electrical field is exerted on a droplet deposited on the membrane. Micro-porous polycarbonate membranes are obtained with the breath-figures assembly technique, using micro-scaled stainless steel gauzes as supports. The memb...

Descripción completa

Detalles Bibliográficos
Autores principales: Bormashenko, Edward, Pogreb, Roman, Balter, Sagi, Aurbach, Doron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805972/
https://www.ncbi.nlm.nih.gov/pubmed/24149769
http://dx.doi.org/10.1038/srep03028
_version_ 1782477920509362176
author Bormashenko, Edward
Pogreb, Roman
Balter, Sagi
Aurbach, Doron
author_facet Bormashenko, Edward
Pogreb, Roman
Balter, Sagi
Aurbach, Doron
author_sort Bormashenko, Edward
collection PubMed
description We report electrically controlled membranes which become permeable when an electrical field is exerted on a droplet deposited on the membrane. Micro-porous polycarbonate membranes are obtained with the breath-figures assembly technique, using micro-scaled stainless steel gauzes as supports. The membranes demonstrate pronounced Cassie-Baxter wetting. Air cushions trapped by the droplet prevent water penetration through the membrane. We demonstrate two possibilities for controlling the permeability of the membrane, namely contact and non-contact scenarios. When an electrical field is exerted on a droplet deposited on the membrane, the triple-line is de-pinned and the wetting transition occurs in the non-contact scheme. Thus, the membrane becomes permeable. The contact scheme of the permeability control is based on the electrowetting phenomenon.
format Online
Article
Text
id pubmed-3805972
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38059722013-10-23 Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions Bormashenko, Edward Pogreb, Roman Balter, Sagi Aurbach, Doron Sci Rep Article We report electrically controlled membranes which become permeable when an electrical field is exerted on a droplet deposited on the membrane. Micro-porous polycarbonate membranes are obtained with the breath-figures assembly technique, using micro-scaled stainless steel gauzes as supports. The membranes demonstrate pronounced Cassie-Baxter wetting. Air cushions trapped by the droplet prevent water penetration through the membrane. We demonstrate two possibilities for controlling the permeability of the membrane, namely contact and non-contact scenarios. When an electrical field is exerted on a droplet deposited on the membrane, the triple-line is de-pinned and the wetting transition occurs in the non-contact scheme. Thus, the membrane becomes permeable. The contact scheme of the permeability control is based on the electrowetting phenomenon. Nature Publishing Group 2013-10-23 /pmc/articles/PMC3805972/ /pubmed/24149769 http://dx.doi.org/10.1038/srep03028 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
spellingShingle Article
Bormashenko, Edward
Pogreb, Roman
Balter, Sagi
Aurbach, Doron
Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions
title Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions
title_full Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions
title_fullStr Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions
title_full_unstemmed Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions
title_short Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions
title_sort electrically controlled membranes exploiting cassie-wenzel wetting transitions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805972/
https://www.ncbi.nlm.nih.gov/pubmed/24149769
http://dx.doi.org/10.1038/srep03028
work_keys_str_mv AT bormashenkoedward electricallycontrolledmembranesexploitingcassiewenzelwettingtransitions
AT pogrebroman electricallycontrolledmembranesexploitingcassiewenzelwettingtransitions
AT baltersagi electricallycontrolledmembranesexploitingcassiewenzelwettingtransitions
AT aurbachdoron electricallycontrolledmembranesexploitingcassiewenzelwettingtransitions