Cargando…

A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, Dan, White, Ian R, Riley, Richard D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806037/
https://www.ncbi.nlm.nih.gov/pubmed/23401213
http://dx.doi.org/10.1002/bimj.201200152
Descripción
Sumario:Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example.