Cargando…
Application of Zero-Inflated Poisson Mixed Models in Prognostic Factors of Hepatitis C
Background and Objectives. In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic...
Autores principales: | Akbarzadeh Baghban, Alireza, Pourhoseingholi, Asma, Zayeri, Farid, Jafari, Ali Akbar, Alavian, Seyed Moayed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806337/ https://www.ncbi.nlm.nih.gov/pubmed/24195069 http://dx.doi.org/10.1155/2013/403151 |
Ejemplares similares
-
Statistical count models for prognosis the risk factors of hepatitis C
por: Pourhoseingholi, Asma, et al.
Publicado: (2013) -
Bayesian Zero- Inflated Poisson model for prognosis of demographic factors associated with using crystal meth in Tehran population
por: Pourhoseingholi, Asma, et al.
Publicado: (2018) -
Random effect model for identifying related factors to virological response in HCV patients
por: Zayeri, Farid, et al.
Publicado: (2013) -
Mapping the Relative Risk of Congenital Hypothyroidism Incidence via Spatial Zero-Inflated Poisson Model in Guilan Province, Iran
por: Chaboki, Bahare Gholami, et al.
Publicado: (2021) -
Zero inflated Poisson and negative binomial regression models: application in education
por: Salehi, Masoud, et al.
Publicado: (2015)