Cargando…
Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene
Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy) and a dental disorder (amelogenesis imperfecta), which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806830/ https://www.ncbi.nlm.nih.gov/pubmed/24194943 http://dx.doi.org/10.1371/journal.pone.0078529 |
_version_ | 1782288442485374976 |
---|---|
author | Luder, Hans U. Gerth-Kahlert, Christina Ostertag-Benzinger, Silke Schorderet, Daniel F. |
author_facet | Luder, Hans U. Gerth-Kahlert, Christina Ostertag-Benzinger, Silke Schorderet, Daniel F. |
author_sort | Luder, Hans U. |
collection | PubMed |
description | Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy) and a dental disorder (amelogenesis imperfecta), which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a disrupted magnesium transport is involved in the development of the dental abnormalities observed in Jalili syndrome. |
format | Online Article Text |
id | pubmed-3806830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38068302013-11-05 Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene Luder, Hans U. Gerth-Kahlert, Christina Ostertag-Benzinger, Silke Schorderet, Daniel F. PLoS One Research Article Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy) and a dental disorder (amelogenesis imperfecta), which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a disrupted magnesium transport is involved in the development of the dental abnormalities observed in Jalili syndrome. Public Library of Science 2013-10-23 /pmc/articles/PMC3806830/ /pubmed/24194943 http://dx.doi.org/10.1371/journal.pone.0078529 Text en © 2013 Luder et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Luder, Hans U. Gerth-Kahlert, Christina Ostertag-Benzinger, Silke Schorderet, Daniel F. Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene |
title | Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene |
title_full | Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene |
title_fullStr | Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene |
title_full_unstemmed | Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene |
title_short | Dental Phenotype in Jalili Syndrome Due to a c.1312 dupC Homozygous Mutation in the CNNM4 Gene |
title_sort | dental phenotype in jalili syndrome due to a c.1312 dupc homozygous mutation in the cnnm4 gene |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806830/ https://www.ncbi.nlm.nih.gov/pubmed/24194943 http://dx.doi.org/10.1371/journal.pone.0078529 |
work_keys_str_mv | AT luderhansu dentalphenotypeinjalilisyndromeduetoac1312dupchomozygousmutationinthecnnm4gene AT gerthkahlertchristina dentalphenotypeinjalilisyndromeduetoac1312dupchomozygousmutationinthecnnm4gene AT ostertagbenzingersilke dentalphenotypeinjalilisyndromeduetoac1312dupchomozygousmutationinthecnnm4gene AT schorderetdanielf dentalphenotypeinjalilisyndromeduetoac1312dupchomozygousmutationinthecnnm4gene |