Cargando…
Optimal compressed sensing reconstructions of fMRI using 2D deterministic and stochastic sampling geometries
BACKGROUND: Compressive sensing can provide a promising framework for accelerating fMRI image acquisition by allowing reconstructions from a limited number of frequency-domain samples. Unfortunately, the majority of compressive sensing studies are based on stochastic sampling geometries that cannot...
Autores principales: | Jeromin, Oliver, Pattichis, Marios S, Calhoun, Vince D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807755/ https://www.ncbi.nlm.nih.gov/pubmed/22607467 http://dx.doi.org/10.1186/1475-925X-11-25 |
Ejemplares similares
-
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
por: Han, Paul Kyu, et al.
Publicado: (2015) -
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018) -
Resting-State fMRI Dynamics and Null Models: Perspectives, Sampling Variability, and Simulations
por: Miller, Robyn L., et al.
Publicado: (2018) -
Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging
por: Chen, Zikuan, et al.
Publicado: (2012)