Cargando…

Design, Development, and Optimization of Polymeric Based-Colonic Drug Delivery System of Naproxen

The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixt...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Pooja, Chawla, Anuj, Pawar, Pravin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808103/
https://www.ncbi.nlm.nih.gov/pubmed/24198725
http://dx.doi.org/10.1155/2013/654829
Descripción
Sumario:The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. The in vitro drug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highest in vitro drug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting.