Cargando…
Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30(T)
The bacterial endophyte Herbaspirillum frisingense GSF30(T) is a colonizer of several grasses grown in temperate climates, including the highly nitrogen-efficient perennial energy grass Miscanthus. Inoculation of Miscanthus sinensis seedlings with H. frisingense promoted root and shoot growth but ha...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808336/ https://www.ncbi.nlm.nih.gov/pubmed/24043849 http://dx.doi.org/10.1093/jxb/ert276 |
Sumario: | The bacterial endophyte Herbaspirillum frisingense GSF30(T) is a colonizer of several grasses grown in temperate climates, including the highly nitrogen-efficient perennial energy grass Miscanthus. Inoculation of Miscanthus sinensis seedlings with H. frisingense promoted root and shoot growth but had only a minor impact on nutrient concentrations. The bacterium affected the root architecture and increased fine-root structures. Although H. frisingense has the genetic requirements to fix nitrogen, only minor changes in nitrogen concentrations were observed. Herbaspirillum agglomerates were identified primarily in the root apoplast but also in the shoots. The short-term (3h) and long-term (3 weeks) transcriptomic responses of the plant to bacterial inoculation revealed that H. frisingense induced rapid changes in plant hormone signalling, most prominent in jasmonate signalling. Ethylene signalling pathways were also affected and persisted after 3 weeks in the root. Growth stimulation of the root by the ethylene precursor 1-aminocyclopropane 1-carboxylic acid was dose dependent and was affected by H. frisingense inoculation. Minor changes in the proteome were identified after 3 weeks. This study suggests that H. frisingense improves plant growth by modulating plant hormone signalling pathways and provides a framework to understand the beneficial effects of diazotrophic plant-growth-promoting bacteria, such as H. frisingense, on the biomass grass Miscanthus. |
---|