Cargando…
The Convallis Rule for Unsupervised Learning in Cortical Networks
The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plastici...
Autores principales: | Yger, Pierre, Harris, Kenneth D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808450/ https://www.ncbi.nlm.nih.gov/pubmed/24204224 http://dx.doi.org/10.1371/journal.pcbi.1003272 |
Ejemplares similares
-
The Convallis learning rule for unsupervised learning in spiking neuronal networks
por: Yger, Pierre, et al.
Publicado: (2013) -
Near-Optimal Foraging in the Pacific Cicada Killer Sphecius convallis Patton (Hymenoptera: Crabronidae)
por: Coelho, Joseph R., et al.
Publicado: (2012) -
Local unsupervised learning rules for a spiking neural network with dendrite
por: Manette, Olivier FL
Publicado: (2011) -
Cortical surface registration using unsupervised learning
por: Cheng, Jieyu, et al.
Publicado: (2020) -
Supervised learning with decision margins in pools of spiking neurons
por: Le Mouel, Charlotte, et al.
Publicado: (2014)