Cargando…
Factoring 51 and 85 with 8 qubits
We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808816/ https://www.ncbi.nlm.nih.gov/pubmed/24162074 http://dx.doi.org/10.1038/srep03023 |
Sumario: | We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates. |
---|