Cargando…

Myricitrin Inhibits Acrylamide-Mediated Cytotoxicity in Human Caco-2 Cells by Preventing Oxidative Stress

Oxidative stress was thought to be associated with acrylamide cytotoxicity, but the link between oxidative stress and acrylamide cytotoxicity in the gastrointestinal tract, the primary organ in contact with dietary acrylamide, is still unclear. This study was conducted to evaluate the antioxidant ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wei, Feng, Lina, Shen, Yang, Su, Hongming, Li, Ya, Zhuang, Jingjing, Zhang, Lingxia, Zheng, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809942/
https://www.ncbi.nlm.nih.gov/pubmed/24224177
http://dx.doi.org/10.1155/2013/724183
Descripción
Sumario:Oxidative stress was thought to be associated with acrylamide cytotoxicity, but the link between oxidative stress and acrylamide cytotoxicity in the gastrointestinal tract, the primary organ in contact with dietary acrylamide, is still unclear. This study was conducted to evaluate the antioxidant activity of natural dietary compound myricitrin and its protective role against acrylamide cytotoxicity. We found that myricitrin can effectively scavenge multiple free radicals (including DPPH free radical, hydroxyl radical, and ABTS free radical) in a concentration-dependent manner. Our results further indicated that the presence of myricitrin (2.5–10 μg/mL) was found to significantly inhibit acrylamide-induced cytotoxicity in human gastrointestinal Caco-2 cells. Moreover, acrylamide-induced cytotoxicity is closely related to oxidative stress in Caco-2 cells. Interestingly, myricitrin was able to suppress acrylamide toxicity by inhibiting ROS generation. Taken together, these results demonstrate that myricitrin had a profound antioxidant effect and can protect against acrylamide-mediated cytotoxicity.