Cargando…

Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays

Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery st...

Descripción completa

Detalles Bibliográficos
Autores principales: Turewicz, Michael, May, Caroline, Ahrens, Maike, Woitalla, Dirk, Gold, Ralf, Casjens, Swaantje, Pesch, Beate, Brüning, Thomas, Meyer, Helmut E, Nordhoff, Eckhard, Böckmann, Miriam, Stephan, Christian, Eisenacher, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810711/
https://www.ncbi.nlm.nih.gov/pubmed/23616427
http://dx.doi.org/10.1002/pmic.201200518
_version_ 1782288841740124160
author Turewicz, Michael
May, Caroline
Ahrens, Maike
Woitalla, Dirk
Gold, Ralf
Casjens, Swaantje
Pesch, Beate
Brüning, Thomas
Meyer, Helmut E
Nordhoff, Eckhard
Böckmann, Miriam
Stephan, Christian
Eisenacher, Martin
author_facet Turewicz, Michael
May, Caroline
Ahrens, Maike
Woitalla, Dirk
Gold, Ralf
Casjens, Swaantje
Pesch, Beate
Brüning, Thomas
Meyer, Helmut E
Nordhoff, Eckhard
Böckmann, Miriam
Stephan, Christian
Eisenacher, Martin
author_sort Turewicz, Michael
collection PubMed
description Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinson’s disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation. In this work, appropriate improvements of the default workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re-implementation of Prospector’s pre-selection method, multivariate or hybrid feature selection, and validation of the selected protein panel using an independent test set define in combination an improved workflow for large studies.
format Online
Article
Text
id pubmed-3810711
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-38107112013-11-06 Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays Turewicz, Michael May, Caroline Ahrens, Maike Woitalla, Dirk Gold, Ralf Casjens, Swaantje Pesch, Beate Brüning, Thomas Meyer, Helmut E Nordhoff, Eckhard Böckmann, Miriam Stephan, Christian Eisenacher, Martin Proteomics Bioinformatics Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinson’s disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation. In this work, appropriate improvements of the default workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re-implementation of Prospector’s pre-selection method, multivariate or hybrid feature selection, and validation of the selected protein panel using an independent test set define in combination an improved workflow for large studies. Blackwell Publishing Ltd 2013-07 2013-06-20 /pmc/articles/PMC3810711/ /pubmed/23616427 http://dx.doi.org/10.1002/pmic.201200518 Text en © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Bioinformatics
Turewicz, Michael
May, Caroline
Ahrens, Maike
Woitalla, Dirk
Gold, Ralf
Casjens, Swaantje
Pesch, Beate
Brüning, Thomas
Meyer, Helmut E
Nordhoff, Eckhard
Böckmann, Miriam
Stephan, Christian
Eisenacher, Martin
Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
title Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
title_full Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
title_fullStr Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
title_full_unstemmed Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
title_short Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
title_sort improving the default data analysis workflow for large autoimmune biomarker discovery studies with protoarrays
topic Bioinformatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810711/
https://www.ncbi.nlm.nih.gov/pubmed/23616427
http://dx.doi.org/10.1002/pmic.201200518
work_keys_str_mv AT turewiczmichael improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT maycaroline improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT ahrensmaike improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT woitalladirk improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT goldralf improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT casjensswaantje improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT peschbeate improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT bruningthomas improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT meyerhelmute improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT nordhoffeckhard improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT bockmannmiriam improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT stephanchristian improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays
AT eisenachermartin improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays