Cargando…
Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays
Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery st...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810711/ https://www.ncbi.nlm.nih.gov/pubmed/23616427 http://dx.doi.org/10.1002/pmic.201200518 |
_version_ | 1782288841740124160 |
---|---|
author | Turewicz, Michael May, Caroline Ahrens, Maike Woitalla, Dirk Gold, Ralf Casjens, Swaantje Pesch, Beate Brüning, Thomas Meyer, Helmut E Nordhoff, Eckhard Böckmann, Miriam Stephan, Christian Eisenacher, Martin |
author_facet | Turewicz, Michael May, Caroline Ahrens, Maike Woitalla, Dirk Gold, Ralf Casjens, Swaantje Pesch, Beate Brüning, Thomas Meyer, Helmut E Nordhoff, Eckhard Böckmann, Miriam Stephan, Christian Eisenacher, Martin |
author_sort | Turewicz, Michael |
collection | PubMed |
description | Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinson’s disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation. In this work, appropriate improvements of the default workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re-implementation of Prospector’s pre-selection method, multivariate or hybrid feature selection, and validation of the selected protein panel using an independent test set define in combination an improved workflow for large studies. |
format | Online Article Text |
id | pubmed-3810711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38107112013-11-06 Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays Turewicz, Michael May, Caroline Ahrens, Maike Woitalla, Dirk Gold, Ralf Casjens, Swaantje Pesch, Beate Brüning, Thomas Meyer, Helmut E Nordhoff, Eckhard Böckmann, Miriam Stephan, Christian Eisenacher, Martin Proteomics Bioinformatics Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinson’s disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation. In this work, appropriate improvements of the default workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re-implementation of Prospector’s pre-selection method, multivariate or hybrid feature selection, and validation of the selected protein panel using an independent test set define in combination an improved workflow for large studies. Blackwell Publishing Ltd 2013-07 2013-06-20 /pmc/articles/PMC3810711/ /pubmed/23616427 http://dx.doi.org/10.1002/pmic.201200518 Text en © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Bioinformatics Turewicz, Michael May, Caroline Ahrens, Maike Woitalla, Dirk Gold, Ralf Casjens, Swaantje Pesch, Beate Brüning, Thomas Meyer, Helmut E Nordhoff, Eckhard Böckmann, Miriam Stephan, Christian Eisenacher, Martin Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays |
title | Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays |
title_full | Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays |
title_fullStr | Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays |
title_full_unstemmed | Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays |
title_short | Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays |
title_sort | improving the default data analysis workflow for large autoimmune biomarker discovery studies with protoarrays |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810711/ https://www.ncbi.nlm.nih.gov/pubmed/23616427 http://dx.doi.org/10.1002/pmic.201200518 |
work_keys_str_mv | AT turewiczmichael improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT maycaroline improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT ahrensmaike improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT woitalladirk improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT goldralf improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT casjensswaantje improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT peschbeate improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT bruningthomas improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT meyerhelmute improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT nordhoffeckhard improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT bockmannmiriam improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT stephanchristian improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays AT eisenachermartin improvingthedefaultdataanalysisworkflowforlargeautoimmunebiomarkerdiscoverystudieswithprotoarrays |