Cargando…

The importance of a single primary cilium

The centrosome is the main microtubule-organizing center in animal cells, and helps to influence the morphology of the microtubule cytoskeleton in interphase and mitosis. The centrosome also templates the assembly of the primary cilium, and together they serve as a nexus of cell signaling that provi...

Descripción completa

Detalles Bibliográficos
Autor principal: Mahjoub, Moe R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812286/
https://www.ncbi.nlm.nih.gov/pubmed/23819944
http://dx.doi.org/10.4161/org.25144
Descripción
Sumario:The centrosome is the main microtubule-organizing center in animal cells, and helps to influence the morphology of the microtubule cytoskeleton in interphase and mitosis. The centrosome also templates the assembly of the primary cilium, and together they serve as a nexus of cell signaling that provide cells with diverse organization, motility, and sensory functions. The majority of cells in the human body contain a solitary centrosome and cilium, and cells have evolved regulatory mechanisms to precisely control the numbers of these essential organelles. Defects in the structure and function of cilia lead to a variety of complex disease phenotypes termed ciliopathies, while dysregulation of centrosome number has long been proposed to induce genome instability and tumor formation. Here, we review recent findings that link centrosome amplification to changes in cilium number and signaling capacity, and discuss how supernumerary centrosomes may be an important aspect of a set of cilia-related disease phenotypes.