Cargando…
Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft
This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812641/ https://www.ncbi.nlm.nih.gov/pubmed/23966195 http://dx.doi.org/10.3390/s130811051 |
_version_ | 1782288994163228672 |
---|---|
author | Zhang, Zengping Zhang, Fuxue Zhang, Wei |
author_facet | Zhang, Zengping Zhang, Fuxue Zhang, Wei |
author_sort | Zhang, Zengping |
collection | PubMed |
description | This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%. |
format | Online Article Text |
id | pubmed-3812641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-38126412013-10-30 Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft Zhang, Zengping Zhang, Fuxue Zhang, Wei Sensors (Basel) Article This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%. Molecular Diversity Preservation International (MDPI) 2013-08-21 /pmc/articles/PMC3812641/ /pubmed/23966195 http://dx.doi.org/10.3390/s130811051 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Zhang, Zengping Zhang, Fuxue Zhang, Wei Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft |
title | Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft |
title_full | Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft |
title_fullStr | Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft |
title_full_unstemmed | Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft |
title_short | Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft |
title_sort | measurement of phase difference for micromachined gyros driven by rotating aircraft |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812641/ https://www.ncbi.nlm.nih.gov/pubmed/23966195 http://dx.doi.org/10.3390/s130811051 |
work_keys_str_mv | AT zhangzengping measurementofphasedifferenceformicromachinedgyrosdrivenbyrotatingaircraft AT zhangfuxue measurementofphasedifferenceformicromachinedgyrosdrivenbyrotatingaircraft AT zhangwei measurementofphasedifferenceformicromachinedgyrosdrivenbyrotatingaircraft |