Cargando…

Inoculation of silicon nanoparticles with silver atoms

Silicon (Si) nanoparticles were coated inflight with silver (Ag) atoms using a novel method to prepare multicomponent heterostructured metal-semiconductor nanoparticles. Molecular dynamics (MD) computer simulations were employed, supported by high-resolution bright field (BF) transmission electron m...

Descripción completa

Detalles Bibliográficos
Autores principales: Cassidy, Cathal, Singh, Vidyadhar, Grammatikopoulos, Panagiotis, Djurabekova, Flyura, Nordlund, Kai, Sowwan, Mukhles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812657/
https://www.ncbi.nlm.nih.gov/pubmed/24170178
http://dx.doi.org/10.1038/srep03083
Descripción
Sumario:Silicon (Si) nanoparticles were coated inflight with silver (Ag) atoms using a novel method to prepare multicomponent heterostructured metal-semiconductor nanoparticles. Molecular dynamics (MD) computer simulations were employed, supported by high-resolution bright field (BF) transmission electron microscopy (HRTEM) and aberration-corrected scanning transmission electron microscopy (STEM) with a resolution ≤0.1 nm in high angle annular dark field (HAADF) mode. These studies revealed that the alloying behavior and phase dynamics during the coating process are more complex than when attaching hetero-atoms to preformed nanoparticles. According to the MD simulations, Ag atoms condense, nucleate and diffuse into the liquid Si nanoparticles in a process that we term “inoculation”, and a phase transition begins. Subsequent solidification involves an intermediate alloying stage that enabled us to control the microstructure and crystallinity of the solidified hybrid heterostructured nanoparticles.