Cargando…

A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms

Bacteria in the biofilm mode of growth are protected against chemical and mechanical stresses. Biofilms are composed, for the most part, of extracellular polymeric substances (EPSs). The extracellular matrix is composed of different chemical constituents, such as proteins, polysaccharides, and extra...

Descripción completa

Detalles Bibliográficos
Autores principales: Peterson, Brandon W., van der Mei, Henny C., Sjollema, Jelmer, Busscher, Henk J., Sharma, Prashant K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812712/
https://www.ncbi.nlm.nih.gov/pubmed/24129256
http://dx.doi.org/10.1128/mBio.00497-13
_version_ 1782289004074369024
author Peterson, Brandon W.
van der Mei, Henny C.
Sjollema, Jelmer
Busscher, Henk J.
Sharma, Prashant K.
author_facet Peterson, Brandon W.
van der Mei, Henny C.
Sjollema, Jelmer
Busscher, Henk J.
Sharma, Prashant K.
author_sort Peterson, Brandon W.
collection PubMed
description Bacteria in the biofilm mode of growth are protected against chemical and mechanical stresses. Biofilms are composed, for the most part, of extracellular polymeric substances (EPSs). The extracellular matrix is composed of different chemical constituents, such as proteins, polysaccharides, and extracellular DNA (eDNA). Here we aimed to identify the roles of different matrix constituents in the viscoelastic response of biofilms. Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Pseudomonas aeruginosa biofilms were grown under different conditions yielding distinct matrix chemistries. Next, biofilms were subjected to mechanical deformation and stress relaxation was monitored over time. A Maxwell model possessing an average of four elements for an individual biofilm was used to fit the data. Maxwell elements were defined by a relaxation time constant and their relative importance. Relaxation time constants varied widely over the 104 biofilms included and were divided into seven ranges (<1, 1 to 5, 5 to 10, 10 to 50, 50 to 100, 100 to 500, and >500 s). Principal-component analysis was carried out to eliminate related time constant ranges, yielding three principal components that could be related to the known matrix chemistries. The fastest relaxation component (<3 s) was due to the presence of water and soluble polysaccharides, combined with the absence of bacteria, i.e., the heaviest masses in a biofilm. An intermediate component (3 to 70 s) was related to other EPSs, while a distinguishable role was assigned to intact eDNA, which possesses a unique principal component with a time constant range (10 to 25 s) between those of EPS constituents. This implies that eDNA modulates its interaction with other matrix constituents to control its contribution to viscoelastic relaxation under mechanical stress.
format Online
Article
Text
id pubmed-3812712
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-38127122013-10-31 A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms Peterson, Brandon W. van der Mei, Henny C. Sjollema, Jelmer Busscher, Henk J. Sharma, Prashant K. mBio Research Article Bacteria in the biofilm mode of growth are protected against chemical and mechanical stresses. Biofilms are composed, for the most part, of extracellular polymeric substances (EPSs). The extracellular matrix is composed of different chemical constituents, such as proteins, polysaccharides, and extracellular DNA (eDNA). Here we aimed to identify the roles of different matrix constituents in the viscoelastic response of biofilms. Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Pseudomonas aeruginosa biofilms were grown under different conditions yielding distinct matrix chemistries. Next, biofilms were subjected to mechanical deformation and stress relaxation was monitored over time. A Maxwell model possessing an average of four elements for an individual biofilm was used to fit the data. Maxwell elements were defined by a relaxation time constant and their relative importance. Relaxation time constants varied widely over the 104 biofilms included and were divided into seven ranges (<1, 1 to 5, 5 to 10, 10 to 50, 50 to 100, 100 to 500, and >500 s). Principal-component analysis was carried out to eliminate related time constant ranges, yielding three principal components that could be related to the known matrix chemistries. The fastest relaxation component (<3 s) was due to the presence of water and soluble polysaccharides, combined with the absence of bacteria, i.e., the heaviest masses in a biofilm. An intermediate component (3 to 70 s) was related to other EPSs, while a distinguishable role was assigned to intact eDNA, which possesses a unique principal component with a time constant range (10 to 25 s) between those of EPS constituents. This implies that eDNA modulates its interaction with other matrix constituents to control its contribution to viscoelastic relaxation under mechanical stress. American Society of Microbiology 2013-10-15 /pmc/articles/PMC3812712/ /pubmed/24129256 http://dx.doi.org/10.1128/mBio.00497-13 Text en Copyright © 2013 Peterson et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Peterson, Brandon W.
van der Mei, Henny C.
Sjollema, Jelmer
Busscher, Henk J.
Sharma, Prashant K.
A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms
title A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms
title_full A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms
title_fullStr A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms
title_full_unstemmed A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms
title_short A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms
title_sort distinguishable role of edna in the viscoelastic relaxation of biofilms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812712/
https://www.ncbi.nlm.nih.gov/pubmed/24129256
http://dx.doi.org/10.1128/mBio.00497-13
work_keys_str_mv AT petersonbrandonw adistinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT vandermeihennyc adistinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT sjollemajelmer adistinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT busscherhenkj adistinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT sharmaprashantk adistinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT petersonbrandonw distinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT vandermeihennyc distinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT sjollemajelmer distinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT busscherhenkj distinguishableroleofednaintheviscoelasticrelaxationofbiofilms
AT sharmaprashantk distinguishableroleofednaintheviscoelasticrelaxationofbiofilms