Cargando…

The case of horizontal gene transfer from bacteria to the peculiar dinoflagellate plastid genome

Organelle genomes lose their genes by transfer to host nuclear genomes, but only occasionally are enriched by foreign genes from other sources. In contrast to mitochondria, plastid genomes are especially resistant to such horizontal gene transfer (HGT), and thus every gene acquired in this way is no...

Descripción completa

Detalles Bibliográficos
Autores principales: Mackiewicz, Paweł, Bodył, Andrzej, Moszczyński, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812789/
https://www.ncbi.nlm.nih.gov/pubmed/24195014
http://dx.doi.org/10.4161/mge.25845
Descripción
Sumario:Organelle genomes lose their genes by transfer to host nuclear genomes, but only occasionally are enriched by foreign genes from other sources. In contrast to mitochondria, plastid genomes are especially resistant to such horizontal gene transfer (HGT), and thus every gene acquired in this way is notable. An exceptional case of HGT was recently recognized in the peculiar peridinin plastid genome of dinoflagellates, which is organized in plasmid-like minicircles. Genomic and phylogenetic analyses of Ceratium horridum and Pyrocystis lunula minicircles revealed four genes and one unannotated open reading frame that probably were gained from bacteria belonging to the Bacteroidetes. Such bacteria seem to be a good source of genes because close endosymbiotic associations between them and dinoflagellates have been observed. The HGT-acquired genes are involved in plastid functions characteristic of other photosynthetic eukaryotes, and their arrangement resembles bacterial operons. These studies indicate that the peridinin plastid genome, usually regarded as having resulted from reduction and fragmentation of a typical plastid genome derived from red algae, may have a chimeric origin that includes bacterial contributions. Potential contamination of the Ceratium and Pyrocystis plastid genomes by bacterial sequences and the controversial localization of their minicircles in the nucleus are also discussed.