Cargando…
Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity
Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly iso...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shaheed Beheshti University of Medical Sciences
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813103/ https://www.ncbi.nlm.nih.gov/pubmed/24250449 |
_version_ | 1782289049526992896 |
---|---|
author | Pourahmad, Jalal Hosseini, Mir-Jamal Eskandari, Mohammad Reza Rahmani, Faezeh |
author_facet | Pourahmad, Jalal Hosseini, Mir-Jamal Eskandari, Mohammad Reza Rahmani, Faezeh |
author_sort | Pourahmad, Jalal |
collection | PubMed |
description | Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen species (ROS) formation and glutathione depletion suggesting that oxidative stress contributed to the CAA cytotoxic mechanism. CAA-induced oxidative stress cytotoxicity markers were significantly prevented by antioxidants, ROS scavengers, mitochondrial permeability transition (MPT) pore sealing agents, endocytosis inhibitors, ATP generators and xanthine oxidase inhibitor. In our study the hepatocyte mitochondrial membrane potential was rapidly decreased by CAA which was prevented by antioxidants and ROS scavenger indicating that mitochondrial membrane damage was a consequence of ROS formation. CAA cytotoxicity was also associated with lysosomal membrane rupture. Our findings showed that at least four different intracellular sources including: metabolic enzymes cytochrome P(450) and xanthine oxidase, mitochondrial respiratory chain disruption and lysosomal Haber-weiss reaction, were involved in CAA induced ROS formation and other subsequent cytotoxic events. Our other interesting finding was that the lysosomotropic agents prevented CAA induced mitochondrial membrane potential collapse and mitochondrial MPT pore sealing agents inhibited lysosomal membrane damage caused by CAA. It can therefore be suggested that there is probably a toxic interaction (cross-talk) between mitochondrial and lysosomal oxidative stress generating systems, which potentiates each organelle damage and ROS formation in CAA- induced hepatotoxicity. |
format | Online Article Text |
id | pubmed-3813103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Shaheed Beheshti University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-38131032013-11-18 Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity Pourahmad, Jalal Hosseini, Mir-Jamal Eskandari, Mohammad Reza Rahmani, Faezeh Iran J Pharm Res Original Article Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen species (ROS) formation and glutathione depletion suggesting that oxidative stress contributed to the CAA cytotoxic mechanism. CAA-induced oxidative stress cytotoxicity markers were significantly prevented by antioxidants, ROS scavengers, mitochondrial permeability transition (MPT) pore sealing agents, endocytosis inhibitors, ATP generators and xanthine oxidase inhibitor. In our study the hepatocyte mitochondrial membrane potential was rapidly decreased by CAA which was prevented by antioxidants and ROS scavenger indicating that mitochondrial membrane damage was a consequence of ROS formation. CAA cytotoxicity was also associated with lysosomal membrane rupture. Our findings showed that at least four different intracellular sources including: metabolic enzymes cytochrome P(450) and xanthine oxidase, mitochondrial respiratory chain disruption and lysosomal Haber-weiss reaction, were involved in CAA induced ROS formation and other subsequent cytotoxic events. Our other interesting finding was that the lysosomotropic agents prevented CAA induced mitochondrial membrane potential collapse and mitochondrial MPT pore sealing agents inhibited lysosomal membrane damage caused by CAA. It can therefore be suggested that there is probably a toxic interaction (cross-talk) between mitochondrial and lysosomal oxidative stress generating systems, which potentiates each organelle damage and ROS formation in CAA- induced hepatotoxicity. Shaheed Beheshti University of Medical Sciences 2012 /pmc/articles/PMC3813103/ /pubmed/24250449 Text en © 2012 by School of Pharmacy, Shaheed Beheshti University of Medical Sciences and Health Services This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Pourahmad, Jalal Hosseini, Mir-Jamal Eskandari, Mohammad Reza Rahmani, Faezeh Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity |
title | Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity |
title_full | Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity |
title_fullStr | Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity |
title_full_unstemmed | Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity |
title_short | Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity |
title_sort | involvement of four different intracellular sites in chloroacetaldehyde- induced oxidative stress cytotoxicity |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813103/ https://www.ncbi.nlm.nih.gov/pubmed/24250449 |
work_keys_str_mv | AT pourahmadjalal involvementoffourdifferentintracellularsitesinchloroacetaldehydeinducedoxidativestresscytotoxicity AT hosseinimirjamal involvementoffourdifferentintracellularsitesinchloroacetaldehydeinducedoxidativestresscytotoxicity AT eskandarimohammadreza involvementoffourdifferentintracellularsitesinchloroacetaldehydeinducedoxidativestresscytotoxicity AT rahmanifaezeh involvementoffourdifferentintracellularsitesinchloroacetaldehydeinducedoxidativestresscytotoxicity |