Cargando…
AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production
Soluble oligomeric amyloid β peptide (Aβ) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP pro...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813448/ https://www.ncbi.nlm.nih.gov/pubmed/24205136 http://dx.doi.org/10.1371/journal.pone.0078155 |
_version_ | 1782289105035460608 |
---|---|
author | Hoey, Sarah E. Buonocore, Federica Cox, Carla J. Hammond, Victoria J. Perkinton, Michael S. Williams, Robert J. |
author_facet | Hoey, Sarah E. Buonocore, Federica Cox, Carla J. Hammond, Victoria J. Perkinton, Michael S. Williams, Robert J. |
author_sort | Hoey, Sarah E. |
collection | PubMed |
description | Soluble oligomeric amyloid β peptide (Aβ) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors (NMDAR) can suppress Aβ levels through an ERK-dependent increase in α-secretase activity. AMPA-type glutamate receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that stimulation of AMPAR might similarly promote non-amyloidogenic APP processing. We have tested this hypothesis by investigating whether AMPAR directly regulate APP processing in cultured mouse cortical neurons, by analyzing APP C-terminal fragments (CTFs), soluble APP (sAPP), Aβ levels, and cleavage of an APP-GAL4 reporter protein. We report that direct stimulation of AMPAR increases non-amyloidogenic α-secretase-mediated APP processing and inhibits Aβ production. Processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only partially dependent on Ca(2+) influx and ERK activity. AMPAR can therefore, be added to the repertoire of receptors that couple to non-amyloidogenic APP processing at glutamatergic synapses and thus pharmacological targeting of AMPAR could potentially influence the development and progression of Aβ pathology in AD. |
format | Online Article Text |
id | pubmed-3813448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38134482013-11-07 AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production Hoey, Sarah E. Buonocore, Federica Cox, Carla J. Hammond, Victoria J. Perkinton, Michael S. Williams, Robert J. PLoS One Research Article Soluble oligomeric amyloid β peptide (Aβ) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors (NMDAR) can suppress Aβ levels through an ERK-dependent increase in α-secretase activity. AMPA-type glutamate receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that stimulation of AMPAR might similarly promote non-amyloidogenic APP processing. We have tested this hypothesis by investigating whether AMPAR directly regulate APP processing in cultured mouse cortical neurons, by analyzing APP C-terminal fragments (CTFs), soluble APP (sAPP), Aβ levels, and cleavage of an APP-GAL4 reporter protein. We report that direct stimulation of AMPAR increases non-amyloidogenic α-secretase-mediated APP processing and inhibits Aβ production. Processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only partially dependent on Ca(2+) influx and ERK activity. AMPAR can therefore, be added to the repertoire of receptors that couple to non-amyloidogenic APP processing at glutamatergic synapses and thus pharmacological targeting of AMPAR could potentially influence the development and progression of Aβ pathology in AD. Public Library of Science 2013-10-24 /pmc/articles/PMC3813448/ /pubmed/24205136 http://dx.doi.org/10.1371/journal.pone.0078155 Text en © 2013 Hoey et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hoey, Sarah E. Buonocore, Federica Cox, Carla J. Hammond, Victoria J. Perkinton, Michael S. Williams, Robert J. AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production |
title | AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production |
title_full | AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production |
title_fullStr | AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production |
title_full_unstemmed | AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production |
title_short | AMPA Receptor Activation Promotes Non-Amyloidogenic Amyloid Precursor Protein Processing and Suppresses Neuronal Amyloid-β Production |
title_sort | ampa receptor activation promotes non-amyloidogenic amyloid precursor protein processing and suppresses neuronal amyloid-β production |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813448/ https://www.ncbi.nlm.nih.gov/pubmed/24205136 http://dx.doi.org/10.1371/journal.pone.0078155 |
work_keys_str_mv | AT hoeysarahe ampareceptoractivationpromotesnonamyloidogenicamyloidprecursorproteinprocessingandsuppressesneuronalamyloidbproduction AT buonocorefederica ampareceptoractivationpromotesnonamyloidogenicamyloidprecursorproteinprocessingandsuppressesneuronalamyloidbproduction AT coxcarlaj ampareceptoractivationpromotesnonamyloidogenicamyloidprecursorproteinprocessingandsuppressesneuronalamyloidbproduction AT hammondvictoriaj ampareceptoractivationpromotesnonamyloidogenicamyloidprecursorproteinprocessingandsuppressesneuronalamyloidbproduction AT perkintonmichaels ampareceptoractivationpromotesnonamyloidogenicamyloidprecursorproteinprocessingandsuppressesneuronalamyloidbproduction AT williamsrobertj ampareceptoractivationpromotesnonamyloidogenicamyloidprecursorproteinprocessingandsuppressesneuronalamyloidbproduction |