Cargando…

Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations

We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) ava...

Descripción completa

Detalles Bibliográficos
Autores principales: Fluckiger, Jacob U., Li, Xia, Whisenant, Jennifer G., Peterson, Todd E., Gore, John C., Yankeelov, Thomas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814089/
https://www.ncbi.nlm.nih.gov/pubmed/24222761
http://dx.doi.org/10.1155/2013/576470
_version_ 1782289203509329920
author Fluckiger, Jacob U.
Li, Xia
Whisenant, Jennifer G.
Peterson, Todd E.
Gore, John C.
Yankeelov, Thomas E.
author_facet Fluckiger, Jacob U.
Li, Xia
Whisenant, Jennifer G.
Peterson, Todd E.
Gore, John C.
Yankeelov, Thomas E.
author_sort Fluckiger, Jacob U.
collection PubMed
description We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES), and the extravascular-intracellular space (EIS). Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies.
format Online
Article
Text
id pubmed-3814089
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-38140892013-11-11 Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations Fluckiger, Jacob U. Li, Xia Whisenant, Jennifer G. Peterson, Todd E. Gore, John C. Yankeelov, Thomas E. Int J Biomed Imaging Research Article We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES), and the extravascular-intracellular space (EIS). Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies. Hindawi Publishing Corporation 2013 2013-10-03 /pmc/articles/PMC3814089/ /pubmed/24222761 http://dx.doi.org/10.1155/2013/576470 Text en Copyright © 2013 Jacob U. Fluckiger et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Fluckiger, Jacob U.
Li, Xia
Whisenant, Jennifer G.
Peterson, Todd E.
Gore, John C.
Yankeelov, Thomas E.
Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
title Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
title_full Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
title_fullStr Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
title_full_unstemmed Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
title_short Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
title_sort using dynamic contrast-enhanced magnetic resonance imaging data to constrain a positron emission tomography kinetic model: theory and simulations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814089/
https://www.ncbi.nlm.nih.gov/pubmed/24222761
http://dx.doi.org/10.1155/2013/576470
work_keys_str_mv AT fluckigerjacobu usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations
AT lixia usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations
AT whisenantjenniferg usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations
AT petersontodde usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations
AT gorejohnc usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations
AT yankeelovthomase usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations