Cargando…
Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations
We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) ava...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814089/ https://www.ncbi.nlm.nih.gov/pubmed/24222761 http://dx.doi.org/10.1155/2013/576470 |
_version_ | 1782289203509329920 |
---|---|
author | Fluckiger, Jacob U. Li, Xia Whisenant, Jennifer G. Peterson, Todd E. Gore, John C. Yankeelov, Thomas E. |
author_facet | Fluckiger, Jacob U. Li, Xia Whisenant, Jennifer G. Peterson, Todd E. Gore, John C. Yankeelov, Thomas E. |
author_sort | Fluckiger, Jacob U. |
collection | PubMed |
description | We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES), and the extravascular-intracellular space (EIS). Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies. |
format | Online Article Text |
id | pubmed-3814089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-38140892013-11-11 Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations Fluckiger, Jacob U. Li, Xia Whisenant, Jennifer G. Peterson, Todd E. Gore, John C. Yankeelov, Thomas E. Int J Biomed Imaging Research Article We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES), and the extravascular-intracellular space (EIS). Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies. Hindawi Publishing Corporation 2013 2013-10-03 /pmc/articles/PMC3814089/ /pubmed/24222761 http://dx.doi.org/10.1155/2013/576470 Text en Copyright © 2013 Jacob U. Fluckiger et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fluckiger, Jacob U. Li, Xia Whisenant, Jennifer G. Peterson, Todd E. Gore, John C. Yankeelov, Thomas E. Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations |
title | Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations |
title_full | Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations |
title_fullStr | Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations |
title_full_unstemmed | Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations |
title_short | Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations |
title_sort | using dynamic contrast-enhanced magnetic resonance imaging data to constrain a positron emission tomography kinetic model: theory and simulations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814089/ https://www.ncbi.nlm.nih.gov/pubmed/24222761 http://dx.doi.org/10.1155/2013/576470 |
work_keys_str_mv | AT fluckigerjacobu usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations AT lixia usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations AT whisenantjenniferg usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations AT petersontodde usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations AT gorejohnc usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations AT yankeelovthomase usingdynamiccontrastenhancedmagneticresonanceimagingdatatoconstrainapositronemissiontomographykineticmodeltheoryandsimulations |