Cargando…
An empirical workflow for genome-wide single nucleotide polymorphism-based predictive modeling
Technology is constantly evolving, necessitating the development of workflows for efficient use of high-dimensional data. We develop and test an empirical workflow for predictive modeling based on single nucleotide polymorphisms (SNP) from genome-wide association study (GWAS) datasets. To this aim,...
Autores principales: | Floudas, Charalampos S., Balasubramanian, Jeya Balaji, Romkes, Marjorie, Gopalakrishnan, Vanathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814469/ https://www.ncbi.nlm.nih.gov/pubmed/24303297 |
Ejemplares similares
-
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
por: Balasubramanian, Jeya Balaji, et al.
Publicado: (2018) -
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
por: Lustgarten, Jonathan Lyle, et al.
Publicado: (2017) -
Selective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
por: Balasubramanian, Jeya B., et al.
Publicado: (2014) -
On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue
por: Pineda, Arturo López, et al.
Publicado: (2016) -
Empirical Bayes analysis of single nucleotide polymorphisms
por: Schwender, Holger, et al.
Publicado: (2008)