Cargando…

Automated Detection of Systematic Off-label Drug Use in Free Text of Electronic Medical Records

Off-label use of a drug occurs when it is used in a manner that deviates from its FDA label. Studies estimate that 21% of prescriptions are off-label, with only 27% of those uses supported by evidence of safety and efficacy. We have developed methods to detect population level off-label usage using...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Kenneth, LePendu, Paea, Shah, Nigam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Informatics Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814472/
https://www.ncbi.nlm.nih.gov/pubmed/24303308
Descripción
Sumario:Off-label use of a drug occurs when it is used in a manner that deviates from its FDA label. Studies estimate that 21% of prescriptions are off-label, with only 27% of those uses supported by evidence of safety and efficacy. We have developed methods to detect population level off-label usage using computationally efficient annotation of free text from clinical notes to generate features encoding empirical information about drug-disease mentions. By including additional features encoding prior knowledge about drugs, diseases, and known usage, we trained a highly accurate predictive model that was used to detect novel candidate off-label usages in a very large clinical corpus. We show that the candidate uses are plausible and can be prioritized for further analysis in terms of safety and efficacy.