Cargando…
Automated Detection of Systematic Off-label Drug Use in Free Text of Electronic Medical Records
Off-label use of a drug occurs when it is used in a manner that deviates from its FDA label. Studies estimate that 21% of prescriptions are off-label, with only 27% of those uses supported by evidence of safety and efficacy. We have developed methods to detect population level off-label usage using...
Autores principales: | Jung, Kenneth, LePendu, Paea, Shah, Nigam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814472/ https://www.ncbi.nlm.nih.gov/pubmed/24303308 |
Ejemplares similares
-
Automated Detection of Off-Label Drug Use
por: Jung, Kenneth, et al.
Publicado: (2014) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: (2013) -
Using Temporal Patterns in Medical Records to Discern Adverse Drug Events from Indications
por: Liu, Yi, et al.
Publicado: (2012) -
Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
por: Jung, Kenneth, et al.
Publicado: (2015)