Cargando…
Pharmacovigilance using Clinical Text
The current state of the art in post-marketing drug surveillance utilizes voluntarily submitted reports of suspected adverse drug reactions. We present data mining methods that transform unstructured patient notes taken by doctors, nurses and other clinicians into a de-identified, temporally ordered...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814501/ https://www.ncbi.nlm.nih.gov/pubmed/24303315 |
Sumario: | The current state of the art in post-marketing drug surveillance utilizes voluntarily submitted reports of suspected adverse drug reactions. We present data mining methods that transform unstructured patient notes taken by doctors, nurses and other clinicians into a de-identified, temporally ordered, patient-feature matrix using standardized medical terminologies. We demonstrate how to use the resulting high-throughput data to monitor for adverse drug events based on the clinical notes in the EHR. |
---|