Cargando…
Pharmacovigilance using Clinical Text
The current state of the art in post-marketing drug surveillance utilizes voluntarily submitted reports of suspected adverse drug reactions. We present data mining methods that transform unstructured patient notes taken by doctors, nurses and other clinicians into a de-identified, temporally ordered...
Autores principales: | LePendu, Paea, Iyer, Srinivasan V, Bauer-Mehren, Anna, Harpaz, Rave, Ghebremariam, Yohannes T, Cooke, John P, Shah, Nigam H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814501/ https://www.ncbi.nlm.nih.gov/pubmed/24303315 |
Ejemplares similares
-
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: (2013) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201) -
Network analysis of unstructured EHR data for clinical research
por: Bauer-Mehren, Anna, et al.
Publicado: ( 201) -
Practice-Based Evidence: Profiling the Safety of Cilostazol by Text-Mining of Clinical Notes
por: Leeper, Nicholas J., et al.
Publicado: (2013) -
Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
por: Jung, Kenneth, et al.
Publicado: (2015)