Cargando…
A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to...
Autores principales: | Schaffer, Evan S., Ostojic, Srdjan, Abbott, L. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814717/ https://www.ncbi.nlm.nih.gov/pubmed/24204236 http://dx.doi.org/10.1371/journal.pcbi.1003301 |
Ejemplares similares
-
Natural firing patterns reduce sensitivity of synaptic plasticity to spike-timing
por: Graupner, Michael, et al.
Publicado: (2013) -
From Spiking Neuron Models to Linear-Nonlinear Models
por: Ostojic, Srdjan, et al.
Publicado: (2011) -
Geometry of population activity in spiking networks with low-rank structure
por: Cimeša, Ljubica, et al.
Publicado: (2023) -
Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise
por: Hertäg, Loreen, et al.
Publicado: (2014) -
Contrasting the effects of adaptation and synaptic filtering on the timescales of dynamics in recurrent networks
por: Beiran, Manuel, et al.
Publicado: (2019)