Cargando…
N-terminal Serine Dephosphorylation Is Required for KCC3 Cotransporter Full Activation by Cell Swelling
The K(+):Cl(−) cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have b...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814743/ https://www.ncbi.nlm.nih.gov/pubmed/24043619 http://dx.doi.org/10.1074/jbc.M113.475574 |
Sumario: | The K(+):Cl(−) cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity. |
---|